• Privacy Policy

Research Method

Home » Research Design – Types, Methods and Examples

Research Design – Types, Methods and Examples

Table of Contents

Research Design

Research Design

Definition:

Research design refers to the overall strategy or plan for conducting a research study. It outlines the methods and procedures that will be used to collect and analyze data, as well as the goals and objectives of the study. Research design is important because it guides the entire research process and ensures that the study is conducted in a systematic and rigorous manner.

Types of Research Design

Types of Research Design are as follows:

Descriptive Research Design

This type of research design is used to describe a phenomenon or situation. It involves collecting data through surveys, questionnaires, interviews, and observations. The aim of descriptive research is to provide an accurate and detailed portrayal of a particular group, event, or situation. It can be useful in identifying patterns, trends, and relationships in the data.

Correlational Research Design

Correlational research design is used to determine if there is a relationship between two or more variables. This type of research design involves collecting data from participants and analyzing the relationship between the variables using statistical methods. The aim of correlational research is to identify the strength and direction of the relationship between the variables.

Experimental Research Design

Experimental research design is used to investigate cause-and-effect relationships between variables. This type of research design involves manipulating one variable and measuring the effect on another variable. It usually involves randomly assigning participants to groups and manipulating an independent variable to determine its effect on a dependent variable. The aim of experimental research is to establish causality.

Quasi-experimental Research Design

Quasi-experimental research design is similar to experimental research design, but it lacks one or more of the features of a true experiment. For example, there may not be random assignment to groups or a control group. This type of research design is used when it is not feasible or ethical to conduct a true experiment.

Case Study Research Design

Case study research design is used to investigate a single case or a small number of cases in depth. It involves collecting data through various methods, such as interviews, observations, and document analysis. The aim of case study research is to provide an in-depth understanding of a particular case or situation.

Longitudinal Research Design

Longitudinal research design is used to study changes in a particular phenomenon over time. It involves collecting data at multiple time points and analyzing the changes that occur. The aim of longitudinal research is to provide insights into the development, growth, or decline of a particular phenomenon over time.

Structure of Research Design

The format of a research design typically includes the following sections:

  • Introduction : This section provides an overview of the research problem, the research questions, and the importance of the study. It also includes a brief literature review that summarizes previous research on the topic and identifies gaps in the existing knowledge.
  • Research Questions or Hypotheses: This section identifies the specific research questions or hypotheses that the study will address. These questions should be clear, specific, and testable.
  • Research Methods : This section describes the methods that will be used to collect and analyze data. It includes details about the study design, the sampling strategy, the data collection instruments, and the data analysis techniques.
  • Data Collection: This section describes how the data will be collected, including the sample size, data collection procedures, and any ethical considerations.
  • Data Analysis: This section describes how the data will be analyzed, including the statistical techniques that will be used to test the research questions or hypotheses.
  • Results : This section presents the findings of the study, including descriptive statistics and statistical tests.
  • Discussion and Conclusion : This section summarizes the key findings of the study, interprets the results, and discusses the implications of the findings. It also includes recommendations for future research.
  • References : This section lists the sources cited in the research design.

Example of Research Design

An Example of Research Design could be:

Research question: Does the use of social media affect the academic performance of high school students?

Research design:

  • Research approach : The research approach will be quantitative as it involves collecting numerical data to test the hypothesis.
  • Research design : The research design will be a quasi-experimental design, with a pretest-posttest control group design.
  • Sample : The sample will be 200 high school students from two schools, with 100 students in the experimental group and 100 students in the control group.
  • Data collection : The data will be collected through surveys administered to the students at the beginning and end of the academic year. The surveys will include questions about their social media usage and academic performance.
  • Data analysis : The data collected will be analyzed using statistical software. The mean scores of the experimental and control groups will be compared to determine whether there is a significant difference in academic performance between the two groups.
  • Limitations : The limitations of the study will be acknowledged, including the fact that social media usage can vary greatly among individuals, and the study only focuses on two schools, which may not be representative of the entire population.
  • Ethical considerations: Ethical considerations will be taken into account, such as obtaining informed consent from the participants and ensuring their anonymity and confidentiality.

How to Write Research Design

Writing a research design involves planning and outlining the methodology and approach that will be used to answer a research question or hypothesis. Here are some steps to help you write a research design:

  • Define the research question or hypothesis : Before beginning your research design, you should clearly define your research question or hypothesis. This will guide your research design and help you select appropriate methods.
  • Select a research design: There are many different research designs to choose from, including experimental, survey, case study, and qualitative designs. Choose a design that best fits your research question and objectives.
  • Develop a sampling plan : If your research involves collecting data from a sample, you will need to develop a sampling plan. This should outline how you will select participants and how many participants you will include.
  • Define variables: Clearly define the variables you will be measuring or manipulating in your study. This will help ensure that your results are meaningful and relevant to your research question.
  • Choose data collection methods : Decide on the data collection methods you will use to gather information. This may include surveys, interviews, observations, experiments, or secondary data sources.
  • Create a data analysis plan: Develop a plan for analyzing your data, including the statistical or qualitative techniques you will use.
  • Consider ethical concerns : Finally, be sure to consider any ethical concerns related to your research, such as participant confidentiality or potential harm.

When to Write Research Design

Research design should be written before conducting any research study. It is an important planning phase that outlines the research methodology, data collection methods, and data analysis techniques that will be used to investigate a research question or problem. The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable.

Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research question, identify the most appropriate research methodology, and plan the data collection and analysis procedures in advance. By doing so, the research can be conducted in a more efficient and effective manner, and the results are more likely to be valid and reliable.

Purpose of Research Design

The purpose of research design is to plan and structure a research study in a way that enables the researcher to achieve the desired research goals with accuracy, validity, and reliability. Research design is the blueprint or the framework for conducting a study that outlines the methods, procedures, techniques, and tools for data collection and analysis.

Some of the key purposes of research design include:

  • Providing a clear and concise plan of action for the research study.
  • Ensuring that the research is conducted ethically and with rigor.
  • Maximizing the accuracy and reliability of the research findings.
  • Minimizing the possibility of errors, biases, or confounding variables.
  • Ensuring that the research is feasible, practical, and cost-effective.
  • Determining the appropriate research methodology to answer the research question(s).
  • Identifying the sample size, sampling method, and data collection techniques.
  • Determining the data analysis method and statistical tests to be used.
  • Facilitating the replication of the study by other researchers.
  • Enhancing the validity and generalizability of the research findings.

Applications of Research Design

There are numerous applications of research design in various fields, some of which are:

  • Social sciences: In fields such as psychology, sociology, and anthropology, research design is used to investigate human behavior and social phenomena. Researchers use various research designs, such as experimental, quasi-experimental, and correlational designs, to study different aspects of social behavior.
  • Education : Research design is essential in the field of education to investigate the effectiveness of different teaching methods and learning strategies. Researchers use various designs such as experimental, quasi-experimental, and case study designs to understand how students learn and how to improve teaching practices.
  • Health sciences : In the health sciences, research design is used to investigate the causes, prevention, and treatment of diseases. Researchers use various designs, such as randomized controlled trials, cohort studies, and case-control studies, to study different aspects of health and healthcare.
  • Business : Research design is used in the field of business to investigate consumer behavior, marketing strategies, and the impact of different business practices. Researchers use various designs, such as survey research, experimental research, and case studies, to study different aspects of the business world.
  • Engineering : In the field of engineering, research design is used to investigate the development and implementation of new technologies. Researchers use various designs, such as experimental research and case studies, to study the effectiveness of new technologies and to identify areas for improvement.

Advantages of Research Design

Here are some advantages of research design:

  • Systematic and organized approach : A well-designed research plan ensures that the research is conducted in a systematic and organized manner, which makes it easier to manage and analyze the data.
  • Clear objectives: The research design helps to clarify the objectives of the study, which makes it easier to identify the variables that need to be measured, and the methods that need to be used to collect and analyze data.
  • Minimizes bias: A well-designed research plan minimizes the chances of bias, by ensuring that the data is collected and analyzed objectively, and that the results are not influenced by the researcher’s personal biases or preferences.
  • Efficient use of resources: A well-designed research plan helps to ensure that the resources (time, money, and personnel) are used efficiently and effectively, by focusing on the most important variables and methods.
  • Replicability: A well-designed research plan makes it easier for other researchers to replicate the study, which enhances the credibility and reliability of the findings.
  • Validity: A well-designed research plan helps to ensure that the findings are valid, by ensuring that the methods used to collect and analyze data are appropriate for the research question.
  • Generalizability : A well-designed research plan helps to ensure that the findings can be generalized to other populations, settings, or situations, which increases the external validity of the study.

Research Design Vs Research Methodology

Research DesignResearch Methodology
The plan and structure for conducting research that outlines the procedures to be followed to collect and analyze data.The set of principles, techniques, and tools used to carry out the research plan and achieve research objectives.
Describes the overall approach and strategy used to conduct research, including the type of data to be collected, the sources of data, and the methods for collecting and analyzing data.Refers to the techniques and methods used to gather, analyze and interpret data, including sampling techniques, data collection methods, and data analysis techniques.
Helps to ensure that the research is conducted in a systematic, rigorous, and valid way, so that the results are reliable and can be used to make sound conclusions.Includes a set of procedures and tools that enable researchers to collect and analyze data in a consistent and valid manner, regardless of the research design used.
Common research designs include experimental, quasi-experimental, correlational, and descriptive studies.Common research methodologies include qualitative, quantitative, and mixed-methods approaches.
Determines the overall structure of the research project and sets the stage for the selection of appropriate research methodologies.Guides the researcher in selecting the most appropriate research methods based on the research question, research design, and other contextual factors.
Helps to ensure that the research project is feasible, relevant, and ethical.Helps to ensure that the data collected is accurate, valid, and reliable, and that the research findings can be interpreted and generalized to the population of interest.

About the author

' src=

Muhammad Hassan

Researcher, Academic Writer, Web developer

You may also like

Limitations in Research

Limitations in Research – Types, Examples and...

Significance of the Study

Significance of the Study – Examples and Writing...

What is a Hypothesis

What is a Hypothesis – Types, Examples and...

Dissertation vs Thesis

Dissertation vs Thesis – Key Differences

APA Research Paper Format

APA Research Paper Format – Example, Sample and...

APA Table of Contents

APA Table of Contents – Format and Example

Leave a comment x.

Save my name, email, and website in this browser for the next time I comment.

research design helps in

Research Design 101

Everything You Need To Get Started (With Examples)

By: Derek Jansen (MBA) | Reviewers: Eunice Rautenbach (DTech) & Kerryn Warren (PhD) | April 2023

Research design for qualitative and quantitative studies

Navigating the world of research can be daunting, especially if you’re a first-time researcher. One concept you’re bound to run into fairly early in your research journey is that of “ research design ”. Here, we’ll guide you through the basics using practical examples , so that you can approach your research with confidence.

Overview: Research Design 101

What is research design.

  • Research design types for quantitative studies
  • Video explainer : quantitative research design
  • Research design types for qualitative studies
  • Video explainer : qualitative research design
  • How to choose a research design
  • Key takeaways

Research design refers to the overall plan, structure or strategy that guides a research project , from its conception to the final data analysis. A good research design serves as the blueprint for how you, as the researcher, will collect and analyse data while ensuring consistency, reliability and validity throughout your study.

Understanding different types of research designs is essential as helps ensure that your approach is suitable  given your research aims, objectives and questions , as well as the resources you have available to you. Without a clear big-picture view of how you’ll design your research, you run the risk of potentially making misaligned choices in terms of your methodology – especially your sampling , data collection and data analysis decisions.

The problem with defining research design…

One of the reasons students struggle with a clear definition of research design is because the term is used very loosely across the internet, and even within academia.

Some sources claim that the three research design types are qualitative, quantitative and mixed methods , which isn’t quite accurate (these just refer to the type of data that you’ll collect and analyse). Other sources state that research design refers to the sum of all your design choices, suggesting it’s more like a research methodology . Others run off on other less common tangents. No wonder there’s confusion!

In this article, we’ll clear up the confusion. We’ll explain the most common research design types for both qualitative and quantitative research projects, whether that is for a full dissertation or thesis, or a smaller research paper or article.

Free Webinar: Research Methodology 101

Research Design: Quantitative Studies

Quantitative research involves collecting and analysing data in a numerical form. Broadly speaking, there are four types of quantitative research designs: descriptive , correlational , experimental , and quasi-experimental . 

Descriptive Research Design

As the name suggests, descriptive research design focuses on describing existing conditions, behaviours, or characteristics by systematically gathering information without manipulating any variables. In other words, there is no intervention on the researcher’s part – only data collection.

For example, if you’re studying smartphone addiction among adolescents in your community, you could deploy a survey to a sample of teens asking them to rate their agreement with certain statements that relate to smartphone addiction. The collected data would then provide insight regarding how widespread the issue may be – in other words, it would describe the situation.

The key defining attribute of this type of research design is that it purely describes the situation . In other words, descriptive research design does not explore potential relationships between different variables or the causes that may underlie those relationships. Therefore, descriptive research is useful for generating insight into a research problem by describing its characteristics . By doing so, it can provide valuable insights and is often used as a precursor to other research design types.

Correlational Research Design

Correlational design is a popular choice for researchers aiming to identify and measure the relationship between two or more variables without manipulating them . In other words, this type of research design is useful when you want to know whether a change in one thing tends to be accompanied by a change in another thing.

For example, if you wanted to explore the relationship between exercise frequency and overall health, you could use a correlational design to help you achieve this. In this case, you might gather data on participants’ exercise habits, as well as records of their health indicators like blood pressure, heart rate, or body mass index. Thereafter, you’d use a statistical test to assess whether there’s a relationship between the two variables (exercise frequency and health).

As you can see, correlational research design is useful when you want to explore potential relationships between variables that cannot be manipulated or controlled for ethical, practical, or logistical reasons. It is particularly helpful in terms of developing predictions , and given that it doesn’t involve the manipulation of variables, it can be implemented at a large scale more easily than experimental designs (which will look at next).

That said, it’s important to keep in mind that correlational research design has limitations – most notably that it cannot be used to establish causality . In other words, correlation does not equal causation . To establish causality, you’ll need to move into the realm of experimental design, coming up next…

Need a helping hand?

research design helps in

Experimental Research Design

Experimental research design is used to determine if there is a causal relationship between two or more variables . With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions about potential causality.

For example, if you wanted to measure if/how different types of fertiliser affect plant growth, you could set up several groups of plants, with each group receiving a different type of fertiliser, as well as one with no fertiliser at all. You could then measure how much each plant group grew (on average) over time and compare the results from the different groups to see which fertiliser was most effective.

Overall, experimental research design provides researchers with a powerful way to identify and measure causal relationships (and the direction of causality) between variables. However, developing a rigorous experimental design can be challenging as it’s not always easy to control all the variables in a study. This often results in smaller sample sizes , which can reduce the statistical power and generalisability of the results.

Moreover, experimental research design requires random assignment . This means that the researcher needs to assign participants to different groups or conditions in a way that each participant has an equal chance of being assigned to any group (note that this is not the same as random sampling ). Doing so helps reduce the potential for bias and confounding variables . This need for random assignment can lead to ethics-related issues . For example, withholding a potentially beneficial medical treatment from a control group may be considered unethical in certain situations.

Quasi-Experimental Research Design

Quasi-experimental research design is used when the research aims involve identifying causal relations , but one cannot (or doesn’t want to) randomly assign participants to different groups (for practical or ethical reasons). Instead, with a quasi-experimental research design, the researcher relies on existing groups or pre-existing conditions to form groups for comparison.

For example, if you were studying the effects of a new teaching method on student achievement in a particular school district, you may be unable to randomly assign students to either group and instead have to choose classes or schools that already use different teaching methods. This way, you still achieve separate groups, without having to assign participants to specific groups yourself.

Naturally, quasi-experimental research designs have limitations when compared to experimental designs. Given that participant assignment is not random, it’s more difficult to confidently establish causality between variables, and, as a researcher, you have less control over other variables that may impact findings.

All that said, quasi-experimental designs can still be valuable in research contexts where random assignment is not possible and can often be undertaken on a much larger scale than experimental research, thus increasing the statistical power of the results. What’s important is that you, as the researcher, understand the limitations of the design and conduct your quasi-experiment as rigorously as possible, paying careful attention to any potential confounding variables .

The four most common quantitative research design types are descriptive, correlational, experimental and quasi-experimental.

Research Design: Qualitative Studies

There are many different research design types when it comes to qualitative studies, but here we’ll narrow our focus to explore the “Big 4”. Specifically, we’ll look at phenomenological design, grounded theory design, ethnographic design, and case study design.

Phenomenological Research Design

Phenomenological design involves exploring the meaning of lived experiences and how they are perceived by individuals. This type of research design seeks to understand people’s perspectives , emotions, and behaviours in specific situations. Here, the aim for researchers is to uncover the essence of human experience without making any assumptions or imposing preconceived ideas on their subjects.

For example, you could adopt a phenomenological design to study why cancer survivors have such varied perceptions of their lives after overcoming their disease. This could be achieved by interviewing survivors and then analysing the data using a qualitative analysis method such as thematic analysis to identify commonalities and differences.

Phenomenological research design typically involves in-depth interviews or open-ended questionnaires to collect rich, detailed data about participants’ subjective experiences. This richness is one of the key strengths of phenomenological research design but, naturally, it also has limitations. These include potential biases in data collection and interpretation and the lack of generalisability of findings to broader populations.

Grounded Theory Research Design

Grounded theory (also referred to as “GT”) aims to develop theories by continuously and iteratively analysing and comparing data collected from a relatively large number of participants in a study. It takes an inductive (bottom-up) approach, with a focus on letting the data “speak for itself”, without being influenced by preexisting theories or the researcher’s preconceptions.

As an example, let’s assume your research aims involved understanding how people cope with chronic pain from a specific medical condition, with a view to developing a theory around this. In this case, grounded theory design would allow you to explore this concept thoroughly without preconceptions about what coping mechanisms might exist. You may find that some patients prefer cognitive-behavioural therapy (CBT) while others prefer to rely on herbal remedies. Based on multiple, iterative rounds of analysis, you could then develop a theory in this regard, derived directly from the data (as opposed to other preexisting theories and models).

Grounded theory typically involves collecting data through interviews or observations and then analysing it to identify patterns and themes that emerge from the data. These emerging ideas are then validated by collecting more data until a saturation point is reached (i.e., no new information can be squeezed from the data). From that base, a theory can then be developed .

As you can see, grounded theory is ideally suited to studies where the research aims involve theory generation , especially in under-researched areas. Keep in mind though that this type of research design can be quite time-intensive , given the need for multiple rounds of data collection and analysis.

research design helps in

Ethnographic Research Design

Ethnographic design involves observing and studying a culture-sharing group of people in their natural setting to gain insight into their behaviours, beliefs, and values. The focus here is on observing participants in their natural environment (as opposed to a controlled environment). This typically involves the researcher spending an extended period of time with the participants in their environment, carefully observing and taking field notes .

All of this is not to say that ethnographic research design relies purely on observation. On the contrary, this design typically also involves in-depth interviews to explore participants’ views, beliefs, etc. However, unobtrusive observation is a core component of the ethnographic approach.

As an example, an ethnographer may study how different communities celebrate traditional festivals or how individuals from different generations interact with technology differently. This may involve a lengthy period of observation, combined with in-depth interviews to further explore specific areas of interest that emerge as a result of the observations that the researcher has made.

As you can probably imagine, ethnographic research design has the ability to provide rich, contextually embedded insights into the socio-cultural dynamics of human behaviour within a natural, uncontrived setting. Naturally, however, it does come with its own set of challenges, including researcher bias (since the researcher can become quite immersed in the group), participant confidentiality and, predictably, ethical complexities . All of these need to be carefully managed if you choose to adopt this type of research design.

Case Study Design

With case study research design, you, as the researcher, investigate a single individual (or a single group of individuals) to gain an in-depth understanding of their experiences, behaviours or outcomes. Unlike other research designs that are aimed at larger sample sizes, case studies offer a deep dive into the specific circumstances surrounding a person, group of people, event or phenomenon, generally within a bounded setting or context .

As an example, a case study design could be used to explore the factors influencing the success of a specific small business. This would involve diving deeply into the organisation to explore and understand what makes it tick – from marketing to HR to finance. In terms of data collection, this could include interviews with staff and management, review of policy documents and financial statements, surveying customers, etc.

While the above example is focused squarely on one organisation, it’s worth noting that case study research designs can have different variation s, including single-case, multiple-case and longitudinal designs. As you can see in the example, a single-case design involves intensely examining a single entity to understand its unique characteristics and complexities. Conversely, in a multiple-case design , multiple cases are compared and contrasted to identify patterns and commonalities. Lastly, in a longitudinal case design , a single case or multiple cases are studied over an extended period of time to understand how factors develop over time.

As you can see, a case study research design is particularly useful where a deep and contextualised understanding of a specific phenomenon or issue is desired. However, this strength is also its weakness. In other words, you can’t generalise the findings from a case study to the broader population. So, keep this in mind if you’re considering going the case study route.

Case study design often involves investigating an individual to gain an in-depth understanding of their experiences, behaviours or outcomes.

How To Choose A Research Design

Having worked through all of these potential research designs, you’d be forgiven for feeling a little overwhelmed and wondering, “ But how do I decide which research design to use? ”. While we could write an entire post covering that alone, here are a few factors to consider that will help you choose a suitable research design for your study.

Data type: The first determining factor is naturally the type of data you plan to be collecting – i.e., qualitative or quantitative. This may sound obvious, but we have to be clear about this – don’t try to use a quantitative research design on qualitative data (or vice versa)!

Research aim(s) and question(s): As with all methodological decisions, your research aim and research questions will heavily influence your research design. For example, if your research aims involve developing a theory from qualitative data, grounded theory would be a strong option. Similarly, if your research aims involve identifying and measuring relationships between variables, one of the experimental designs would likely be a better option.

Time: It’s essential that you consider any time constraints you have, as this will impact the type of research design you can choose. For example, if you’ve only got a month to complete your project, a lengthy design such as ethnography wouldn’t be a good fit.

Resources: Take into account the resources realistically available to you, as these need to factor into your research design choice. For example, if you require highly specialised lab equipment to execute an experimental design, you need to be sure that you’ll have access to that before you make a decision.

Keep in mind that when it comes to research, it’s important to manage your risks and play as conservatively as possible. If your entire project relies on you achieving a huge sample, having access to niche equipment or holding interviews with very difficult-to-reach participants, you’re creating risks that could kill your project. So, be sure to think through your choices carefully and make sure that you have backup plans for any existential risks. Remember that a relatively simple methodology executed well generally will typically earn better marks than a highly-complex methodology executed poorly.

research design helps in

Recap: Key Takeaways

We’ve covered a lot of ground here. Let’s recap by looking at the key takeaways:

  • Research design refers to the overall plan, structure or strategy that guides a research project, from its conception to the final analysis of data.
  • Research designs for quantitative studies include descriptive , correlational , experimental and quasi-experimenta l designs.
  • Research designs for qualitative studies include phenomenological , grounded theory , ethnographic and case study designs.
  • When choosing a research design, you need to consider a variety of factors, including the type of data you’ll be working with, your research aims and questions, your time and the resources available to you.

If you need a helping hand with your research design (or any other aspect of your research), check out our private coaching services .

research design helps in

Psst... there’s more!

This post was based on one of our popular Research Bootcamps . If you're working on a research project, you'll definitely want to check this out ...

11 Comments

Wei Leong YONG

Is there any blog article explaining more on Case study research design? Is there a Case study write-up template? Thank you.

Solly Khan

Thanks this was quite valuable to clarify such an important concept.

hetty

Thanks for this simplified explanations. it is quite very helpful.

Belz

This was really helpful. thanks

Imur

Thank you for your explanation. I think case study research design and the use of secondary data in researches needs to be talked about more in your videos and articles because there a lot of case studies research design tailored projects out there.

Please is there any template for a case study research design whose data type is a secondary data on your repository?

Sam Msongole

This post is very clear, comprehensive and has been very helpful to me. It has cleared the confusion I had in regard to research design and methodology.

Robyn Pritchard

This post is helpful, easy to understand, and deconstructs what a research design is. Thanks

Rachael Opoku

This post is really helpful.

kelebogile

how to cite this page

Peter

Thank you very much for the post. It is wonderful and has cleared many worries in my mind regarding research designs. I really appreciate .

ali

how can I put this blog as my reference(APA style) in bibliography part?

Submit a Comment Cancel reply

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

  • Print Friendly
  • Skip to main content
  • Skip to primary sidebar
  • Skip to footer
  • QuestionPro

survey software icon

  • Solutions Industries Gaming Automotive Sports and events Education Government Travel & Hospitality Financial Services Healthcare Cannabis Technology Use Case AskWhy Communities Audience Contactless surveys Mobile LivePolls Member Experience GDPR Positive People Science 360 Feedback Surveys
  • Resources Blog eBooks Survey Templates Case Studies Training Help center

research design helps in

Home Market Research Research Tools and Apps

Research Design: What it is, Elements & Types

Research Design

Can you imagine doing research without a plan? Probably not. When we discuss a strategy to collect, study, and evaluate data, we talk about research design. This design addresses problems and creates a consistent and logical model for data analysis. Let’s learn more about it.

What is Research Design?

Research design is the framework of research methods and techniques chosen by a researcher to conduct a study. The design allows researchers to sharpen the research methods suitable for the subject matter and set up their studies for success.

Creating a research topic explains the type of research (experimental,  survey research ,  correlational , semi-experimental, review) and its sub-type (experimental design, research problem , descriptive case-study). 

There are three main types of designs for research:

  • Data collection
  • Measurement
  • Data Analysis

The research problem an organization faces will determine the design, not vice-versa. The design phase of a study determines which tools to use and how they are used.

The Process of Research Design

The research design process is a systematic and structured approach to conducting research. The process is essential to ensure that the study is valid, reliable, and produces meaningful results.

  • Consider your aims and approaches: Determine the research questions and objectives, and identify the theoretical framework and methodology for the study.
  • Choose a type of Research Design: Select the appropriate research design, such as experimental, correlational, survey, case study, or ethnographic, based on the research questions and objectives.
  • Identify your population and sampling method: Determine the target population and sample size, and choose the sampling method, such as random , stratified random sampling , or convenience sampling.
  • Choose your data collection methods: Decide on the data collection methods , such as surveys, interviews, observations, or experiments, and select the appropriate instruments or tools for collecting data.
  • Plan your data collection procedures: Develop a plan for data collection, including the timeframe, location, and personnel involved, and ensure ethical considerations.
  • Decide on your data analysis strategies: Select the appropriate data analysis techniques, such as statistical analysis , content analysis, or discourse analysis, and plan how to interpret the results.

The process of research design is a critical step in conducting research. By following the steps of research design, researchers can ensure that their study is well-planned, ethical, and rigorous.

Research Design Elements

Impactful research usually creates a minimum bias in data and increases trust in the accuracy of collected data. A design that produces the slightest margin of error in experimental research is generally considered the desired outcome. The essential elements are:

  • Accurate purpose statement
  • Techniques to be implemented for collecting and analyzing research
  • The method applied for analyzing collected details
  • Type of research methodology
  • Probable objections to research
  • Settings for the research study
  • Measurement of analysis

Characteristics of Research Design

A proper design sets your study up for success. Successful research studies provide insights that are accurate and unbiased. You’ll need to create a survey that meets all of the main characteristics of a design. There are four key characteristics:

Characteristics of Research Design

  • Neutrality: When you set up your study, you may have to make assumptions about the data you expect to collect. The results projected in the research should be free from research bias and neutral. Understand opinions about the final evaluated scores and conclusions from multiple individuals and consider those who agree with the results.
  • Reliability: With regularly conducted research, the researcher expects similar results every time. You’ll only be able to reach the desired results if your design is reliable. Your plan should indicate how to form research questions to ensure the standard of results.
  • Validity: There are multiple measuring tools available. However, the only correct measuring tools are those which help a researcher in gauging results according to the objective of the research. The  questionnaire  developed from this design will then be valid.
  • Generalization:  The outcome of your design should apply to a population and not just a restricted sample . A generalized method implies that your survey can be conducted on any part of a population with similar accuracy.

The above factors affect how respondents answer the research questions, so they should balance all the above characteristics in a good design. If you want, you can also learn about Selection Bias through our blog.

Research Design Types

A researcher must clearly understand the various types to select which model to implement for a study. Like the research itself, the design of your analysis can be broadly classified into quantitative and qualitative.

Qualitative research

Qualitative research determines relationships between collected data and observations based on mathematical calculations. Statistical methods can prove or disprove theories related to a naturally existing phenomenon. Researchers rely on qualitative observation research methods that conclude “why” a particular theory exists and “what” respondents have to say about it.

Quantitative research

Quantitative research is for cases where statistical conclusions to collect actionable insights are essential. Numbers provide a better perspective for making critical business decisions. Quantitative research methods are necessary for the growth of any organization. Insights drawn from complex numerical data and analysis prove to be highly effective when making decisions about the business’s future.

Qualitative Research vs Quantitative Research

Here is a chart that highlights the major differences between qualitative and quantitative research:

Qualitative ResearchQuantitative Research
Focus on explaining and understanding experiences and perspectives.Focus on quantifying and measuring phenomena.
Use of non-numerical data, such as words, images, and observations.Use of numerical data, such as statistics and surveys.
Usually uses small sample sizes.Usually uses larger sample sizes.
Typically emphasizes in-depth exploration and interpretation.Typically emphasizes precision and objectivity.
Data analysis involves interpretation and narrative analysis.Data analysis involves statistical analysis and hypothesis testing.
Results are presented descriptively.Results are presented numerically and statistically.

In summary or analysis , the step of qualitative research is more exploratory and focuses on understanding the subjective experiences of individuals, while quantitative research is more focused on objective data and statistical analysis.

You can further break down the types of research design into five categories:

types of research design

1. Descriptive: In a descriptive composition, a researcher is solely interested in describing the situation or case under their research study. It is a theory-based design method created by gathering, analyzing, and presenting collected data. This allows a researcher to provide insights into the why and how of research. Descriptive design helps others better understand the need for the research. If the problem statement is not clear, you can conduct exploratory research. 

2. Experimental: Experimental research establishes a relationship between the cause and effect of a situation. It is a causal research design where one observes the impact caused by the independent variable on the dependent variable. For example, one monitors the influence of an independent variable such as a price on a dependent variable such as customer satisfaction or brand loyalty. It is an efficient research method as it contributes to solving a problem.

The independent variables are manipulated to monitor the change it has on the dependent variable. Social sciences often use it to observe human behavior by analyzing two groups. Researchers can have participants change their actions and study how the people around them react to understand social psychology better.

3. Correlational research: Correlational research  is a non-experimental research technique. It helps researchers establish a relationship between two closely connected variables. There is no assumption while evaluating a relationship between two other variables, and statistical analysis techniques calculate the relationship between them. This type of research requires two different groups.

A correlation coefficient determines the correlation between two variables whose values range between -1 and +1. If the correlation coefficient is towards +1, it indicates a positive relationship between the variables, and -1 means a negative relationship between the two variables. 

4. Diagnostic research: In diagnostic design, the researcher is looking to evaluate the underlying cause of a specific topic or phenomenon. This method helps one learn more about the factors that create troublesome situations. 

This design has three parts of the research:

  • Inception of the issue
  • Diagnosis of the issue
  • Solution for the issue

5. Explanatory research : Explanatory design uses a researcher’s ideas and thoughts on a subject to further explore their theories. The study explains unexplored aspects of a subject and details the research questions’ what, how, and why.

Benefits of Research Design

There are several benefits of having a well-designed research plan. Including:

  • Clarity of research objectives: Research design provides a clear understanding of the research objectives and the desired outcomes.
  • Increased validity and reliability: To ensure the validity and reliability of results, research design help to minimize the risk of bias and helps to control extraneous variables.
  • Improved data collection: Research design helps to ensure that the proper data is collected and data is collected systematically and consistently.
  • Better data analysis: Research design helps ensure that the collected data can be analyzed effectively, providing meaningful insights and conclusions.
  • Improved communication: A well-designed research helps ensure the results are clean and influential within the research team and external stakeholders.
  • Efficient use of resources: reducing the risk of waste and maximizing the impact of the research, research design helps to ensure that resources are used efficiently.

A well-designed research plan is essential for successful research, providing clear and meaningful insights and ensuring that resources are practical.

QuestionPro offers a comprehensive solution for researchers looking to conduct research. With its user-friendly interface, robust data collection and analysis tools, and the ability to integrate results from multiple sources, QuestionPro provides a versatile platform for designing and executing research projects.

Our robust suite of research tools provides you with all you need to derive research results. Our online survey platform includes custom point-and-click logic and advanced question types. Uncover the insights that matter the most.

LEARN MORE         FREE TRIAL

MORE LIKE THIS

Jotform vs SurveyMonkey

Jotform vs SurveyMonkey: Which Is Best in 2024

Aug 15, 2024

research design helps in

360 Degree Feedback Spider Chart is Back!

Aug 14, 2024

Jotform vs Wufoo

Jotform vs Wufoo: Comparison of Features and Prices

Aug 13, 2024

research design helps in

Product or Service: Which is More Important? — Tuesday CX Thoughts

Other categories.

  • Academic Research
  • Artificial Intelligence
  • Assessments
  • Brand Awareness
  • Case Studies
  • Communities
  • Consumer Insights
  • Customer effort score
  • Customer Engagement
  • Customer Experience
  • Customer Loyalty
  • Customer Research
  • Customer Satisfaction
  • Employee Benefits
  • Employee Engagement
  • Employee Retention
  • Friday Five
  • General Data Protection Regulation
  • Insights Hub
  • Life@QuestionPro
  • Market Research
  • Mobile diaries
  • Mobile Surveys
  • New Features
  • Online Communities
  • Question Types
  • Questionnaire
  • QuestionPro Products
  • Release Notes
  • Research Tools and Apps
  • Revenue at Risk
  • Survey Templates
  • Training Tips
  • Tuesday CX Thoughts (TCXT)
  • Uncategorized
  • What’s Coming Up
  • Workforce Intelligence

Educational resources and simple solutions for your research journey

What is research design? Types, elements, and examples

What is Research Design? Understand Types of Research Design, with Examples

Have you been wondering “ what is research design ?” or “what are some research design examples ?” Are you unsure about the research design elements or which of the different types of research design best suit your study? Don’t worry! In this article, we’ve got you covered!   

Table of Contents

What is research design?  

Have you been wondering “ what is research design ?” or “what are some research design examples ?” Don’t worry! In this article, we’ve got you covered!  

A research design is the plan or framework used to conduct a research study. It involves outlining the overall approach and methods that will be used to collect and analyze data in order to answer research questions or test hypotheses. A well-designed research study should have a clear and well-defined research question, a detailed plan for collecting data, and a method for analyzing and interpreting the results. A well-thought-out research design addresses all these features.  

Research design elements  

Research design elements include the following:  

  • Clear purpose: The research question or hypothesis must be clearly defined and focused.  
  • Sampling: This includes decisions about sample size, sampling method, and criteria for inclusion or exclusion. The approach varies for different research design types .  
  • Data collection: This research design element involves the process of gathering data or information from the study participants or sources. It includes decisions about what data to collect, how to collect it, and the tools or instruments that will be used.  
  • Data analysis: All research design types require analysis and interpretation of the data collected. This research design element includes decisions about the statistical tests or methods that will be used to analyze the data, as well as any potential confounding variables or biases that may need to be addressed.  
  • Type of research methodology: This includes decisions about the overall approach for the study.  
  • Time frame: An important research design element is the time frame, which includes decisions about the duration of the study, the timeline for data collection and analysis, and follow-up periods.  
  • Ethical considerations: The research design must include decisions about ethical considerations such as informed consent, confidentiality, and participant protection.  
  • Resources: A good research design takes into account decisions about the budget, staffing, and other resources needed to carry out the study.  

The elements of research design should be carefully planned and executed to ensure the validity and reliability of the study findings. Let’s go deeper into the concepts of research design .    

research design helps in

Characteristics of research design  

Some basic characteristics of research design are common to different research design types . These characteristics of research design are as follows:  

  • Neutrality : Right from the study assumptions to setting up the study, a neutral stance must be maintained, free of pre-conceived notions. The researcher’s expectations or beliefs should not color the findings or interpretation of the findings. Accordingly, a good research design should address potential sources of bias and confounding factors to be able to yield unbiased and neutral results.   
  •   Reliability : Reliability is one of the characteristics of research design that refers to consistency in measurement over repeated measures and fewer random errors. A reliable research design must allow for results to be consistent, with few errors due to chance.   
  •   Validity : Validity refers to the minimization of nonrandom (systematic) errors. A good research design must employ measurement tools that ensure validity of the results.  
  •   Generalizability: The outcome of the research design should be applicable to a larger population and not just a small sample . A generalized method means the study can be conducted on any part of a population with similar accuracy.   
  •   Flexibility: A research design should allow for changes to be made to the research plan as needed, based on the data collected and the outcomes of the study  

A well-planned research design is critical for conducting a scientifically rigorous study that will generate neutral, reliable, valid, and generalizable results. At the same time, it should allow some level of flexibility.  

Different types of research design  

A research design is essential to systematically investigate, understand, and interpret phenomena of interest. Let’s look at different types of research design and research design examples .  

Broadly, research design types can be divided into qualitative and quantitative research.  

Qualitative research is subjective and exploratory. It determines relationships between collected data and observations. It is usually carried out through interviews with open-ended questions, observations that are described in words, etc.  

Quantitative research is objective and employs statistical approaches. It establishes the cause-and-effect relationship among variables using different statistical and computational methods. This type of research is usually done using surveys and experiments.  

Qualitative research vs. Quantitative research  

   
Deals with subjective aspects, e.g., experiences, beliefs, perspectives, and concepts.  Measures different types of variables and describes frequencies, averages, correlations, etc. 
Deals with non-numerical data, such as words, images, and observations.  Tests hypotheses about relationships between variables. Results are presented numerically and statistically. 
In qualitative research design, data are collected via direct observations, interviews, focus groups, and naturally occurring data. Methods for conducting qualitative research are grounded theory, thematic analysis, and discourse analysis. 

 

Quantitative research design is empirical. Data collection methods involved are experiments, surveys, and observations expressed in numbers. The research design categories under this are descriptive, experimental, correlational, diagnostic, and explanatory. 
Data analysis involves interpretation and narrative analysis.  Data analysis involves statistical analysis and hypothesis testing. 
The reasoning used to synthesize data is inductive. 

 

The reasoning used to synthesize data is deductive. 

 

Typically used in fields such as sociology, linguistics, and anthropology.  Typically used in fields such as economics, ecology, statistics, and medicine. 
Example: Focus group discussions with women farmers about climate change perception. 

 

Example: Testing the effectiveness of a new treatment for insomnia. 

Qualitative research design types and qualitative research design examples  

The following will familiarize you with the research design categories in qualitative research:  

  • Grounded theory: This design is used to investigate research questions that have not previously been studied in depth. Also referred to as exploratory design , it creates sequential guidelines, offers strategies for inquiry, and makes data collection and analysis more efficient in qualitative research.   

Example: A researcher wants to study how people adopt a certain app. The researcher collects data through interviews and then analyzes the data to look for patterns. These patterns are used to develop a theory about how people adopt that app.  

  •   Thematic analysis: This design is used to compare the data collected in past research to find similar themes in qualitative research.  

Example: A researcher examines an interview transcript to identify common themes, say, topics or patterns emerging repeatedly.  

  • Discourse analysis : This research design deals with language or social contexts used in data gathering in qualitative research.   

Example: Identifying ideological frameworks and viewpoints of writers of a series of policies.  

Quantitative research design types and quantitative research design examples  

Note the following research design categories in quantitative research:  

  • Descriptive research design : This quantitative research design is applied where the aim is to identify characteristics, frequencies, trends, and categories. It may not often begin with a hypothesis. The basis of this research type is a description of an identified variable. This research design type describes the “what,” “when,” “where,” or “how” of phenomena (but not the “why”).   

Example: A study on the different income levels of people who use nutritional supplements regularly.  

  • Correlational research design : Correlation reflects the strength and/or direction of the relationship among variables. The direction of a correlation can be positive or negative. Correlational research design helps researchers establish a relationship between two variables without the researcher controlling any of them.  

Example : An example of correlational research design could be studying the correlation between time spent watching crime shows and aggressive behavior in teenagers.  

  •   Diagnostic research design : In diagnostic design, the researcher aims to understand the underlying cause of a specific topic or phenomenon (usually an area of improvement) and find the most effective solution. In simpler terms, a researcher seeks an accurate “diagnosis” of a problem and identifies a solution.  

Example : A researcher analyzing customer feedback and reviews to identify areas where an app can be improved.    

  • Explanatory research design : In explanatory research design , a researcher uses their ideas and thoughts on a topic to explore their theories in more depth. This design is used to explore a phenomenon when limited information is available. It can help increase current understanding of unexplored aspects of a subject. It is thus a kind of “starting point” for future research.  

Example : Formulating hypotheses to guide future studies on delaying school start times for better mental health in teenagers.  

  •   Causal research design : This can be considered a type of explanatory research. Causal research design seeks to define a cause and effect in its data. The researcher does not use a randomly chosen control group but naturally or pre-existing groupings. Importantly, the researcher does not manipulate the independent variable.   

Example : Comparing school dropout levels and possible bullying events.  

  •   Experimental research design : This research design is used to study causal relationships . One or more independent variables are manipulated, and their effect on one or more dependent variables is measured.  

Example: Determining the efficacy of a new vaccine plan for influenza.  

Benefits of research design  

 T here are numerous benefits of research design . These are as follows:  

  • Clear direction: Among the benefits of research design , the main one is providing direction to the research and guiding the choice of clear objectives, which help the researcher to focus on the specific research questions or hypotheses they want to investigate.  
  • Control: Through a proper research design , researchers can control variables, identify potential confounding factors, and use randomization to minimize bias and increase the reliability of their findings.
  • Replication: Research designs provide the opportunity for replication. This helps to confirm the findings of a study and ensures that the results are not due to chance or other factors. Thus, a well-chosen research design also eliminates bias and errors.  
  • Validity: A research design ensures the validity of the research, i.e., whether the results truly reflect the phenomenon being investigated.  
  • Reliability: Benefits of research design also include reducing inaccuracies and ensuring the reliability of the research (i.e., consistency of the research results over time, across different samples, and under different conditions).  
  • Efficiency: A strong research design helps increase the efficiency of the research process. Researchers can use a variety of designs to investigate their research questions, choose the most appropriate research design for their study, and use statistical analysis to make the most of their data. By effectively describing the data necessary for an adequate test of the hypotheses and explaining how such data will be obtained, research design saves a researcher’s time.   

Overall, an appropriately chosen and executed research design helps researchers to conduct high-quality research, draw meaningful conclusions, and contribute to the advancement of knowledge in their field.

research design helps in

Frequently Asked Questions (FAQ) on Research Design

Q: What are th e main types of research design?

Broadly speaking there are two basic types of research design –

qualitative and quantitative research. Qualitative research is subjective and exploratory; it determines relationships between collected data and observations. It is usually carried out through interviews with open-ended questions, observations that are described in words, etc. Quantitative research , on the other hand, is more objective and employs statistical approaches. It establishes the cause-and-effect relationship among variables using different statistical and computational methods. This type of research design is usually done using surveys and experiments.

Q: How do I choose the appropriate research design for my study?

Choosing the appropriate research design for your study requires careful consideration of various factors. Start by clarifying your research objectives and the type of data you need to collect. Determine whether your study is exploratory, descriptive, or experimental in nature. Consider the availability of resources, time constraints, and the feasibility of implementing the different research designs. Review existing literature to identify similar studies and their research designs, which can serve as a guide. Ultimately, the chosen research design should align with your research questions, provide the necessary data to answer them, and be feasible given your own specific requirements/constraints.

Q: Can research design be modified during the course of a study?

Yes, research design can be modified during the course of a study based on emerging insights, practical constraints, or unforeseen circumstances. Research is an iterative process and, as new data is collected and analyzed, it may become necessary to adjust or refine the research design. However, any modifications should be made judiciously and with careful consideration of their impact on the study’s integrity and validity. It is advisable to document any changes made to the research design, along with a clear rationale for the modifications, in order to maintain transparency and allow for proper interpretation of the results.

Q: How can I ensure the validity and reliability of my research design?

Validity refers to the accuracy and meaningfulness of your study’s findings, while reliability relates to the consistency and stability of the measurements or observations. To enhance validity, carefully define your research variables, use established measurement scales or protocols, and collect data through appropriate methods. Consider conducting a pilot study to identify and address any potential issues before full implementation. To enhance reliability, use standardized procedures, conduct inter-rater or test-retest reliability checks, and employ appropriate statistical techniques for data analysis. It is also essential to document and report your methodology clearly, allowing for replication and scrutiny by other researchers.

Editage All Access is a subscription-based platform that unifies the best AI tools and services designed to speed up, simplify, and streamline every step of a researcher’s journey. The Editage All Access Pack is a one-of-a-kind subscription that unlocks full access to an AI writing assistant, literature recommender, journal finder, scientific illustration tool, and exclusive discounts on professional publication services from Editage.  

Based on 22+ years of experience in academia, Editage All Access empowers researchers to put their best research forward and move closer to success. Explore our top AI Tools pack, AI Tools + Publication Services pack, or Build Your Own Plan. Find everything a researcher needs to succeed, all in one place –  Get All Access now starting at just $14 a month !    

Related Posts

research funding sources

What are the Best Research Funding Sources

inductive research

Inductive vs. Deductive Research Approach

What is Research Design? Characteristics, Types, Process, & Examples

Link Copied

Share on Facebook

Share on Twitter

Share on LinkedIn

What is Research Design? Characteristics, Types, Process, & Examples

Your search has come to an end!

Ever felt like a hamster on a research wheel fast, spinning with a million questions but going nowhere? You've got your topic; you're brimming with curiosity, but... what next? So, forget the research rut and get your papers! This ultimate guide to "what is research design?" will have you navigating your project like a pro, uncovering answers and avoiding dead ends. Know the features of good research design, what you mean by research design, elements of research design, and more.

What is Research Design?

Before starting with the topic, do you know what is research design? Research design is the structure of research methods and techniques selected to conduct a study. It refines the methods suited to the subject and ensures a successful setup. Defining a research topic clarifies the type of research (experimental, survey research, correlational, semi-experimental, review) and its sub-type (experimental design, research problem, descriptive case-study).

There are three main types of designs for research:

1. Data Collection

2. Measurement

3. Data Analysis

Elements of Research Design 

Now that you know what is research design, it is important to know the elements and components of research design. Impactful research minimises bias and enhances data accuracy. Designs with minimal error margins are ideal. Key elements include:

1. Accurate purpose statement

2. Techniques for data collection and analysis

3. Methods for data analysis

4. Type of research methodology

5. Probable objections to research

6. Research settings

7. Timeline

8. Measurement of analysis

Got a hang of research, now book yout student accommodation with one click!

Book through amber today!

Characteristics of Research Design

Research design has several key characteristics that contribute to the validity, reliability, and overall success of a research study. To know the answer for what is research design, it is important to know the characteristics. These are-

1. Reliability

A reliable research design ensures that each study’s results are accurate and can be replicated. This means that if the research is conducted again under the same conditions, it should yield similar results.

2. Validity

A valid research design uses appropriate measuring tools to gauge the results according to the research objective. This ensures that the data collected and the conclusions drawn are relevant and accurately reflect the phenomenon being studied.

3. Neutrality

A neutral research design ensures that the assumptions made at the beginning of the research are free from bias. This means that the data collected throughout the research is based on these unbiased assumptions.

4. Generalizability

A good research design draws an outcome that can be applied to a large set of people and is not limited to the sample size or the research group.

Research Design Process

What is research design? A good research helps you do a really good study that gives fair, trustworthy, and useful results. But it's also good to have a bit of wiggle room for changes. If you’re wondering how to conduct a research in just 5 mins , here's a breakdown and examples to work even better.

1. Consider Aims and Approaches

Define the research questions and objectives, and establish the theoretical framework and methodology.

2. Choose a Type of Research Design

Select the suitable research design, such as experimental, correlational, survey, case study, or ethnographic, according to the research questions and objectives.

3. Identify Population and Sampling Method

Determine the target population and sample size, and select the sampling method, like random, stratified random sampling, or convenience sampling.

4. Choose Data Collection Methods

Decide on the data collection methods, such as surveys, interviews, observations, or experiments, and choose the appropriate instruments for data collection.

5. Plan Data Collection Procedures

Create a plan for data collection, detailing the timeframe, location, and personnel involved, while ensuring ethical considerations are met.

6. Decide on Data Analysis Strategies

Select the appropriate data analysis techniques, like statistical analysis, content analysis, or discourse analysis, and plan the interpretation of the results.

What are the Types of Research Design?

A researcher must grasp various types to decide which model to use for a study. There are different research designs that can be broadly classified into quantitative and qualitative.

Qualitative Research

Qualitative research identifies relationships between collected data and observations through mathematical calculations. Statistical methods validate or refute theories about natural phenomena. This research method answers "why" a theory exists and explores respondents' perspectives.

Quantitative Research

Quantitative research is essential when statistical conclusions are needed to gather actionable insights. Numbers provide clarity for critical business decisions. This method is crucial for organizational growth, with insights from complex numerical data guiding future business decisions.

Qualitative Research vs Quantitative Research

While researching, it is important to know the difference between qualitative and quantitative research. Here's a quick difference between the two:

amber

Aspect Qualitative Research  Quantitative Research
Data Type Non-numerical data such as words, images, and sounds. Numerical data that can be measured and expressed in numerical terms.
Purpose To understand concepts, thoughts, or experiences. To test hypotheses, identify patterns, and make predictions.
Data Collection Common methods include interviews with open-ended questions, observations described in words, and literature reviews. Common methods include surveys with closed-ended questions, experiments, and observations recorded as numbers.
Data Analysis Data is analyzed using grounded theory or thematic analysis. Data is analyzed using statistical methods.
Outcome Produces rich and detailed descriptions of the phenomenon being studied, and uncovers new insights and meanings. Produces objective, empirical data that can be measured.

The research types can be further divided into 5 categories:

1. Descriptive Research

Descriptive research design focuses on detailing a situation or case. It's a theory-driven method that involves gathering, analysing, and presenting data. This approach offers insights into the reasons and mechanisms behind a research subject, enhancing understanding of the research's importance. When the problem statement is unclear, exploratory research can be conducted.

2. Experimental Research

Experimental research design investigates cause-and-effect relationships. It’s a causal design where the impact of an independent variable on a dependent variable is observed. For example, the effect of price on customer satisfaction. This method efficiently addresses problems by manipulating independent variables to see their effect on dependent variables. Often used in social sciences, it involves analysing human behaviour by studying changes in one group's actions and their impact on another group.

3. Correlational Research

Correlational research design is a non-experimental technique that identifies relationships between closely linked variables. It uses statistical analysis to determine these relationships without assumptions. This method requires two different groups. A correlation coefficient between -1 and +1 indicates the strength and direction of the relationship, with +1 showing a positive correlation and -1 a negative correlation.

4. Diagnostic Research

Diagnostic research design aims to identify the underlying causes of specific issues. This method delves into factors creating problematic situations and has three phases: 

  • Issue inception
  • Issue diagnosis
  • Issue resolution

5. Explanatory Research

Explanatory research design builds on a researcher’s ideas to explore theories further. It seeks to explain the unexplored aspects of a subject, addressing the what, how, and why of research questions.

Benefits of Research Design

After learning about what is research design and the process, it is important to know the key benefits of a well-structured research design:

1. Minimises Risk of Errors: A good research design minimises the risk of errors and reduces inaccuracy. It ensures that the study is carried out in the right direction and that all the team members are on the same page.

2. Efficient Use of Resources: It facilitates a concrete research plan for the efficient use of time and resources. It helps the researcher better complete all the tasks, even with limited resources.

3. Provides Direction: The purpose of the research design is to enable the researcher to proceed in the right direction without deviating from the tasks. It helps to identify the major and minor tasks of the study.

4. Ensures Validity and Reliability: A well-designed research enhances the validity and reliability of the findings and allows for the replication of studies by other researchers. The main advantage of a good research design is that it provides accuracy, reliability, consistency, and legitimacy to the research.

5. Facilitates Problem-Solving: A researcher can easily frame the objectives of the research work based on the design of experiments (research design). A good research design helps the researcher find the best solution for the research problems.

6. Better Documentation: It helps in better documentation of the various activities while the project work is going on.

That's it! You've explored all the answers for what is research design in research? Remember, it's not just about picking a fancy method – it's about choosing the perfect tool to answer your burning questions. By carefully considering your goals and resources, you can design a research plan that gathers reliable information and helps you reach clear conclusions. 

Frequently Asked Questions

What are the key components of a research design, how can i choose the best research design for my study, what are some common pitfalls in research design, and how can they be avoided, how does research design impact the validity and reliability of a study, what ethical considerations should be taken into account in research design.

Your ideal student home & a flight ticket awaits

Follow us on :

cta

Related Posts

research design helps in

10 Things You Should Do Before Starting University

research design helps in

10 Hardest Engineering Degrees In the World In 2024

research design helps in

US Grading System In 2024: A Comprehensive Guide

research design helps in

amber © 2024. All rights reserved.

4.8/5 on Trustpilot

Rated as "Excellent" • 4800+ Reviews by students

Rated as "Excellent" • 4800+ Reviews by Students

play store

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, automatically generate references for free.

  • Knowledge Base
  • Methodology

Research Design | Step-by-Step Guide with Examples

Published on 5 May 2022 by Shona McCombes . Revised on 20 March 2023.

A research design is a strategy for answering your research question  using empirical data. Creating a research design means making decisions about:

  • Your overall aims and approach
  • The type of research design you’ll use
  • Your sampling methods or criteria for selecting subjects
  • Your data collection methods
  • The procedures you’ll follow to collect data
  • Your data analysis methods

A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data.

Table of contents

Step 1: consider your aims and approach, step 2: choose a type of research design, step 3: identify your population and sampling method, step 4: choose your data collection methods, step 5: plan your data collection procedures, step 6: decide on your data analysis strategies, frequently asked questions.

  • Introduction

Before you can start designing your research, you should already have a clear idea of the research question you want to investigate.

There are many different ways you could go about answering this question. Your research design choices should be driven by your aims and priorities – start by thinking carefully about what you want to achieve.

The first choice you need to make is whether you’ll take a qualitative or quantitative approach.

Qualitative approach Quantitative approach

Qualitative research designs tend to be more flexible and inductive , allowing you to adjust your approach based on what you find throughout the research process.

Quantitative research designs tend to be more fixed and deductive , with variables and hypotheses clearly defined in advance of data collection.

It’s also possible to use a mixed methods design that integrates aspects of both approaches. By combining qualitative and quantitative insights, you can gain a more complete picture of the problem you’re studying and strengthen the credibility of your conclusions.

Practical and ethical considerations when designing research

As well as scientific considerations, you need to think practically when designing your research. If your research involves people or animals, you also need to consider research ethics .

  • How much time do you have to collect data and write up the research?
  • Will you be able to gain access to the data you need (e.g., by travelling to a specific location or contacting specific people)?
  • Do you have the necessary research skills (e.g., statistical analysis or interview techniques)?
  • Will you need ethical approval ?

At each stage of the research design process, make sure that your choices are practically feasible.

Prevent plagiarism, run a free check.

Within both qualitative and quantitative approaches, there are several types of research design to choose from. Each type provides a framework for the overall shape of your research.

Types of quantitative research designs

Quantitative designs can be split into four main types. Experimental and   quasi-experimental designs allow you to test cause-and-effect relationships, while descriptive and correlational designs allow you to measure variables and describe relationships between them.

Type of design Purpose and characteristics
Experimental
Quasi-experimental
Correlational
Descriptive

With descriptive and correlational designs, you can get a clear picture of characteristics, trends, and relationships as they exist in the real world. However, you can’t draw conclusions about cause and effect (because correlation doesn’t imply causation ).

Experiments are the strongest way to test cause-and-effect relationships without the risk of other variables influencing the results. However, their controlled conditions may not always reflect how things work in the real world. They’re often also more difficult and expensive to implement.

Types of qualitative research designs

Qualitative designs are less strictly defined. This approach is about gaining a rich, detailed understanding of a specific context or phenomenon, and you can often be more creative and flexible in designing your research.

The table below shows some common types of qualitative design. They often have similar approaches in terms of data collection, but focus on different aspects when analysing the data.

Type of design Purpose and characteristics
Grounded theory
Phenomenology

Your research design should clearly define who or what your research will focus on, and how you’ll go about choosing your participants or subjects.

In research, a population is the entire group that you want to draw conclusions about, while a sample is the smaller group of individuals you’ll actually collect data from.

Defining the population

A population can be made up of anything you want to study – plants, animals, organisations, texts, countries, etc. In the social sciences, it most often refers to a group of people.

For example, will you focus on people from a specific demographic, region, or background? Are you interested in people with a certain job or medical condition, or users of a particular product?

The more precisely you define your population, the easier it will be to gather a representative sample.

Sampling methods

Even with a narrowly defined population, it’s rarely possible to collect data from every individual. Instead, you’ll collect data from a sample.

To select a sample, there are two main approaches: probability sampling and non-probability sampling . The sampling method you use affects how confidently you can generalise your results to the population as a whole.

Probability sampling Non-probability sampling

Probability sampling is the most statistically valid option, but it’s often difficult to achieve unless you’re dealing with a very small and accessible population.

For practical reasons, many studies use non-probability sampling, but it’s important to be aware of the limitations and carefully consider potential biases. You should always make an effort to gather a sample that’s as representative as possible of the population.

Case selection in qualitative research

In some types of qualitative designs, sampling may not be relevant.

For example, in an ethnography or a case study, your aim is to deeply understand a specific context, not to generalise to a population. Instead of sampling, you may simply aim to collect as much data as possible about the context you are studying.

In these types of design, you still have to carefully consider your choice of case or community. You should have a clear rationale for why this particular case is suitable for answering your research question.

For example, you might choose a case study that reveals an unusual or neglected aspect of your research problem, or you might choose several very similar or very different cases in order to compare them.

Data collection methods are ways of directly measuring variables and gathering information. They allow you to gain first-hand knowledge and original insights into your research problem.

You can choose just one data collection method, or use several methods in the same study.

Survey methods

Surveys allow you to collect data about opinions, behaviours, experiences, and characteristics by asking people directly. There are two main survey methods to choose from: questionnaires and interviews.

Questionnaires Interviews

Observation methods

Observations allow you to collect data unobtrusively, observing characteristics, behaviours, or social interactions without relying on self-reporting.

Observations may be conducted in real time, taking notes as you observe, or you might make audiovisual recordings for later analysis. They can be qualitative or quantitative.

Quantitative observation

Other methods of data collection

There are many other ways you might collect data depending on your field and topic.

Field Examples of data collection methods
Media & communication Collecting a sample of texts (e.g., speeches, articles, or social media posts) for data on cultural norms and narratives
Psychology Using technologies like neuroimaging, eye-tracking, or computer-based tasks to collect data on things like attention, emotional response, or reaction time
Education Using tests or assignments to collect data on knowledge and skills
Physical sciences Using scientific instruments to collect data on things like weight, blood pressure, or chemical composition

If you’re not sure which methods will work best for your research design, try reading some papers in your field to see what data collection methods they used.

Secondary data

If you don’t have the time or resources to collect data from the population you’re interested in, you can also choose to use secondary data that other researchers already collected – for example, datasets from government surveys or previous studies on your topic.

With this raw data, you can do your own analysis to answer new research questions that weren’t addressed by the original study.

Using secondary data can expand the scope of your research, as you may be able to access much larger and more varied samples than you could collect yourself.

However, it also means you don’t have any control over which variables to measure or how to measure them, so the conclusions you can draw may be limited.

As well as deciding on your methods, you need to plan exactly how you’ll use these methods to collect data that’s consistent, accurate, and unbiased.

Planning systematic procedures is especially important in quantitative research, where you need to precisely define your variables and ensure your measurements are reliable and valid.

Operationalisation

Some variables, like height or age, are easily measured. But often you’ll be dealing with more abstract concepts, like satisfaction, anxiety, or competence. Operationalisation means turning these fuzzy ideas into measurable indicators.

If you’re using observations , which events or actions will you count?

If you’re using surveys , which questions will you ask and what range of responses will be offered?

You may also choose to use or adapt existing materials designed to measure the concept you’re interested in – for example, questionnaires or inventories whose reliability and validity has already been established.

Reliability and validity

Reliability means your results can be consistently reproduced , while validity means that you’re actually measuring the concept you’re interested in.

Reliability Validity

For valid and reliable results, your measurement materials should be thoroughly researched and carefully designed. Plan your procedures to make sure you carry out the same steps in the same way for each participant.

If you’re developing a new questionnaire or other instrument to measure a specific concept, running a pilot study allows you to check its validity and reliability in advance.

Sampling procedures

As well as choosing an appropriate sampling method, you need a concrete plan for how you’ll actually contact and recruit your selected sample.

That means making decisions about things like:

  • How many participants do you need for an adequate sample size?
  • What inclusion and exclusion criteria will you use to identify eligible participants?
  • How will you contact your sample – by mail, online, by phone, or in person?

If you’re using a probability sampling method, it’s important that everyone who is randomly selected actually participates in the study. How will you ensure a high response rate?

If you’re using a non-probability method, how will you avoid bias and ensure a representative sample?

Data management

It’s also important to create a data management plan for organising and storing your data.

Will you need to transcribe interviews or perform data entry for observations? You should anonymise and safeguard any sensitive data, and make sure it’s backed up regularly.

Keeping your data well organised will save time when it comes to analysing them. It can also help other researchers validate and add to your findings.

On their own, raw data can’t answer your research question. The last step of designing your research is planning how you’ll analyse the data.

Quantitative data analysis

In quantitative research, you’ll most likely use some form of statistical analysis . With statistics, you can summarise your sample data, make estimates, and test hypotheses.

Using descriptive statistics , you can summarise your sample data in terms of:

  • The distribution of the data (e.g., the frequency of each score on a test)
  • The central tendency of the data (e.g., the mean to describe the average score)
  • The variability of the data (e.g., the standard deviation to describe how spread out the scores are)

The specific calculations you can do depend on the level of measurement of your variables.

Using inferential statistics , you can:

  • Make estimates about the population based on your sample data.
  • Test hypotheses about a relationship between variables.

Regression and correlation tests look for associations between two or more variables, while comparison tests (such as t tests and ANOVAs ) look for differences in the outcomes of different groups.

Your choice of statistical test depends on various aspects of your research design, including the types of variables you’re dealing with and the distribution of your data.

Qualitative data analysis

In qualitative research, your data will usually be very dense with information and ideas. Instead of summing it up in numbers, you’ll need to comb through the data in detail, interpret its meanings, identify patterns, and extract the parts that are most relevant to your research question.

Two of the most common approaches to doing this are thematic analysis and discourse analysis .

Approach Characteristics
Thematic analysis
Discourse analysis

There are many other ways of analysing qualitative data depending on the aims of your research. To get a sense of potential approaches, try reading some qualitative research papers in your field.

A sample is a subset of individuals from a larger population. Sampling means selecting the group that you will actually collect data from in your research.

For example, if you are researching the opinions of students in your university, you could survey a sample of 100 students.

Statistical sampling allows you to test a hypothesis about the characteristics of a population. There are various sampling methods you can use to ensure that your sample is representative of the population as a whole.

Operationalisation means turning abstract conceptual ideas into measurable observations.

For example, the concept of social anxiety isn’t directly observable, but it can be operationally defined in terms of self-rating scores, behavioural avoidance of crowded places, or physical anxiety symptoms in social situations.

Before collecting data , it’s important to consider how you will operationalise the variables that you want to measure.

The research methods you use depend on the type of data you need to answer your research question .

  • If you want to measure something or test a hypothesis , use quantitative methods . If you want to explore ideas, thoughts, and meanings, use qualitative methods .
  • If you want to analyse a large amount of readily available data, use secondary data. If you want data specific to your purposes with control over how they are generated, collect primary data.
  • If you want to establish cause-and-effect relationships between variables , use experimental methods. If you want to understand the characteristics of a research subject, use descriptive methods.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the ‘Cite this Scribbr article’ button to automatically add the citation to our free Reference Generator.

McCombes, S. (2023, March 20). Research Design | Step-by-Step Guide with Examples. Scribbr. Retrieved 12 August 2024, from https://www.scribbr.co.uk/research-methods/research-design/

Is this article helpful?

Shona McCombes

Shona McCombes

What is Research Design?

Crafting a well-defined research design is essential for guiding the entire project, ensuring coherence in methodology and analysis, and upholding the validity and reproducibility of outcomes in the complex landscape of research.

Updated on March 8, 2024

What is Research Design?

Diving into any new project necessitates a solid plan, a blueprint for navigating the very complex research process. It requires a framework that illustrates how all the principal components of the project are intended to work together to address your central research questions - the research design .

This research design is crucial not only for guiding your entire project, from methodology to analysis, but also for ensuring the validity and reproducibility of its outcomes. Let’s take a closer look at research design by focusing on some of its benefits and core elements.

Why do researchers need a research design?

By taking a deliberate approach to research design, you ensure your chosen methods realistically match the project’s objectives. For example:

  • If your project seeks to find out how a certain group of people was influenced by a natural disaster, you could use interviews as methods for gathering data. Then, inductive or deductive coding may be used for analysis.
  • On the other hand, if your project asks how drinking water was affected by that same natural disaster, you would conduct an experiment to measure certain variables. Inferential or descriptive statistical analysis might then be used to assess the data.

Attention to robust research design helps the project run smoothly and efficiently by reducing both errors and unnecessary busywork. Good research design possesses these specific characteristics :

  • Neutrality : Stick to only the facts throughout, creating a plan based on relevant research methods and analysis. Use it as an opportunity to identify possible sources of bias.
  • Reliability : Include reliable methods that support the consistent measurement of project variables. Not only does it improve the legitimacy of your conclusions but also improves the possibility of replication.
  • Validity : Apply measurement tools that minimize systematic errors. Show the straightforward connection between your project results and research hypothesis.
  • Generalizability : Verify that research outcomes are applicable to a larger population beyond the sample studied for your project. Employ sensible methods and processes that easily adapt to variations in the population.
  • Flexibility : Consider alternative measures for adjusting to unexpected data or outcomes. Veer away from rigid procedures and requirements and plan for adaptability.

When you make the effort to focus on these characteristics while developing a research design, the process itself weeds out many potential challenges. It illuminates the relationships between the project’s multiple elements and allows for modifications from the start. 

What makes up a research design?

As the overarching strategy for your entire project, the research design outlines the plans, considerations, and feasibility of every facet. To make this task less daunting, divide it into logical sections by asking yourself these questions:

  • What is your general approach for the study?
  • What type of design will you employ?
  • How will you choose the population and sampling methods?
  • Which data collection methods will you use?
  • How will the data be analyzed?

The answers to these questions depend on your research questions and hypothesis. Before starting your research design, make certain that these elements are well thought out, basically solidified, and truly represent your intentions for the project.

When considering the overall approach for your project, decide what kind of data is needed to answer the research questions. Start by asking yourself:

  • Do I want to establish a cause-and-effect relationship, test a hypothesis, or identify patterns in data? If yes, use quantitative methodologies.
  • Or, am I seeking non-numerical textual information, like human beliefs, cultural experiences, or individual behaviors? If so, use qualitative methods.

Quantitative research methods offer a systematic means of investigating complex phenomena by measuring, describing, and testing relationships between variables. On the other hand, the qualitative approach explores subjective experiences and concepts within their natural settings. Here are some key characteristics of both approaches:

Approach : Basis

Quantitative : The research begins with the formulation of specific research questions or hypotheses that can be tested empirically using numerical data.

Qualitative : The exploratory and flexible nature allows researchers to delve deeply into the subject matter and generate insights.

Approach : Data collection

Quantitative : Typically involves collecting numerical data through methods such as surveys, experiments, structured observations, or existing datasets.

Qualitative : To collect detailed, contextually rich information directly from participants, researchers use methods such as interviews, focus groups, participant observation, and document analysis.

Approach : Data analysis

Quantitative : Quantitative data are analyzed using statistical techniques.

Qualitative : Data analysis in qualitative research involves systematic techniques for organizing, coding, and interpreting textual or visual data. 

Approach : Interpretation of findings

Quantitative : Researchers interpret the results of the statistical analysis in relation to the research questions or hypotheses.

Qualitative : By paying close attention to context, qualitative researchers focus on interpreting the meanings, patterns, and themes that emerge from the data. 

Approach : Reporting results

Quantitative : Reported in a structured format, often including tables, charts, and graphs to present the data visually.

Qualitative : Contributes to theory building and exploration by generating new insights, challenging existing theories, and uncovering unexpected findings.

Approach : Types

Quantitative :

  • Experimental
  • Quasi-experimental
  • Correlational
  • Descriptive

Qualitative :

  • Ethnography
  • Grounded theory
  • Phenomenology

Population and sampling method

In research, the population, or target population, encompasses all individuals, objects, or events that share the specific attributes you’ve decided are relevant to the study’s objectives. As it is impractical to investigate every individual of this broad population, you will need to choose a subset, or sample.

Starting with a comprehensive understanding of the target population is crucial for selecting a sample that will assure the generalizability of your study’s results. However, drawing a truly random sample can be challenging, often resulting in some degree of sampling bias in most studies.

Sampling strategies vary across research fields, but are generally subdivided into these two categories:

  • Probability Sampling : accurately measurable probability for each member of the target population to have a chance of being included in the sample.
  • Non-probability sampling : selection is non-systematic and does not offer an equal chance for those in the target population to be selected for the sample.

There are several specific sampling methods that fall under these two broad headings:

Probability Sampling Examples

  • Simple random sampling: Each individual is chosen entirely by chance from a population, ensuring equal probability of selection. 
  • Convenience sampling: Participants are selected based on availability and willingness to participate.
  • Systematic sampling: Individuals are selected at regular intervals from the sampling frame based on a systematic rule.
  • Quota sampling: Interviewers are given quotas of specific subjects to recruit.

Non-probability Sampling Examples

  • Stratified sampling: The population is divided into homogenous subgroups based on shared characteristics, then used for a random sample.
  • Judgmental sampling: Researchers select participants based on their judgment or specific criteria.
  • Clustered sampling: Subgroups, or clusters, of the population are determined and then randomly selected for inclusion.
  • Snowball sampling: Existing subjects nominate further subjects known to them, allowing for sampling of hard-to-reach groups.

While they are often resource intensive, probability sampling methods have the advantage of providing representative samples with reduced biases. Non-probability sampling methods, on the other hand, are more cost-effective and convenient, yet lack representativeness and are prone to bias.

Data collection

Throughout the research process, you'll employ a variety of sources to gather, record, and organize information that is relevant to your study or project. Achieving results that hold validity and significance requires the skillful use of efficient data collection methods.

Primary and secondary data collection methods are two distinct approaches to consider when gathering information for your project. Let's take a look at these methods and their associated techniques:

Primary data collection : involves gathering original data directly from the source or through direct interaction with respondents. 

  • Surveys and Questionnaires: collecting data from individuals or groups through face-to-face interviews, telephone calls, mail, or online platforms.
  • Interviews: direct interaction between the researcher and the respondent, conducted in person, over the phone, or through video conferencing.
  • Observations: researchers observe and record behaviors, actions, or events in their natural setting.
  • Experiments: manipulating variables to observe their impact on outcomes. 
  • Focus Groups: small groups of individuals discuss specific topics in a moderated setting.

Secondary data collection: entails collecting and analyzing existing data already collected by someone else for a different purpose.

  • Published sources: books, academic journals, magazines, newspapers, government reports, and other published materials that contain relevant data.
  • Online sources: databases, websites, repositories, and other platforms available for consuming and downloading from the internet. 
  • Government and institutional sources: records, statistics, and other pertinent information to access and purchase.
  • Publicly available data: shared by individuals, organizations, or communities on public stages, websites, or social media.
  • Past research: studies and results available through libraries, educational institutions, and other communal archives. 

Though primary methods offer significant control over data collection, they can be time-consuming, costly, and susceptible to biases. Secondary methods, in contrast, provide cost-effective and time-saving alternatives but offer reduced control over the data collection process.

Data analysis

To extract maximum value from your collected data, it's essential to engage in purposeful evaluation and interpretation. This process of data analysis involves thorough examination, meticulous cleaning, and insightful modeling to reveal patterns pertinent to your research questions.

The choice of methods depends on the specific research objectives, data characteristics, and analytical requirements of your particular project. Here are a few examples of the diverse range of methods you can use for data analysis:

Descriptive statistics : Summarizes key features of the data, like central tendency, spread, and variability. 

Inferential statistics : Draws conclusions about populations based on sample data to test relationships and make predictions.

Qualitative analysis : Considers non-numerical transcripts to identify themes, patterns, and connections.

Causal analysis : Looks at the cause and effect of relationships between variables to test correlations.

Survey and questionnaire analysis : Transforms responses into usable data through processes like cross-tabulation and benchmarking.

Machine learning and data mining : Employs algorithms and computational techniques to discover patterns and insights from large datasets.

By integrating various data analysis tools, you can approach research questions from multiple perspectives to enhance the depth and breadth of your analysis.

Considerations for research design

A meticulous and thorough research design is essential to maintain the quality, reliability, and overall value of your study results. Consider these tips:

Do : Clearly define research questions

Don’t : Rush through the design process

Do : Choose appropriate methods

Don’t : Overlook ethical considerations

Do : Ensure data reliability and validity

Don’t : Neglect practical constraints

Do : Mitigate biases and confounding factors

Don’t : Use overly complex designs

Do : Pilot test the research design

Don’t : Ignore feedback from peers and experts

Do : Document the research design

Don’t : Assume the design is flawless

Final thoughts

A robust research design is undeniably crucial. It sets the framework for data collection, analysis, and interpretation throughout the entire research process. 

Because vagueness and assumptions can jeopardize the success of your project, you must prioritize clarity, make informed choices, and pay meticulous attention to detail. By embracing these strategies, your valuable research has the best chance of making its maximum impact on the world.

Charla Viera, MS

See our "Privacy Policy"

  • University Libraries
  • Research Guides
  • Topic Guides
  • Research Methods Guide
  • Research Design & Method

Research Methods Guide: Research Design & Method

  • Introduction
  • Survey Research
  • Interview Research
  • Data Analysis
  • Resources & Consultation

Tutorial Videos: Research Design & Method

Research Methods (sociology-focused)

Qualitative vs. Quantitative Methods (intro)

Qualitative vs. Quantitative Methods (advanced)

research design helps in

FAQ: Research Design & Method

What is the difference between Research Design and Research Method?

Research design is a plan to answer your research question.  A research method is a strategy used to implement that plan.  Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively.

Which research method should I choose ?

It depends on your research goal.  It depends on what subjects (and who) you want to study.  Let's say you are interested in studying what makes people happy, or why some students are more conscious about recycling on campus.  To answer these questions, you need to make a decision about how to collect your data.  Most frequently used methods include:

  • Observation / Participant Observation
  • Focus Groups
  • Experiments
  • Secondary Data Analysis / Archival Study
  • Mixed Methods (combination of some of the above)

One particular method could be better suited to your research goal than others, because the data you collect from different methods will be different in quality and quantity.   For instance, surveys are usually designed to produce relatively short answers, rather than the extensive responses expected in qualitative interviews.

What other factors should I consider when choosing one method over another?

Time for data collection and analysis is something you want to consider.  An observation or interview method, so-called qualitative approach, helps you collect richer information, but it takes time.  Using a survey helps you collect more data quickly, yet it may lack details.  So, you will need to consider the time you have for research and the balance between strengths and weaknesses associated with each method (e.g., qualitative vs. quantitative).

  • << Previous: Introduction
  • Next: Survey Research >>
  • Last Updated: Aug 21, 2023 10:42 AM

Introducing Research Designs

  • First Online: 10 November 2021

Cite this chapter

research design helps in

  • Stefan Hunziker 3 &
  • Michael Blankenagel 3  

3653 Accesses

We define research design as a combination of decisions within a research process. These decisions enable us to make a specific type of argument by answering the research question. It is the implementation plan for the research study that allows reaching the desired (type of) conclusion. Different research designs make it possible to draw different conclusions. These conclusions produce various kinds of intellectual contributions. As all kinds of intellectual contributions are necessary to increase the body of knowledge, no research design is inherently better than another, only more appropriate to answer a specific question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save.

  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
  • Available as EPUB and PDF

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Alvesson, M., & Skoldburg, K. (2000). Reflexive methodology . SAGE.

Google Scholar  

Alvesson, M. (2004). Reflexive methodology: New vistas for qualitative research. SAGE.

Attia, M., & Edge, J. (2017). Be(com)ing a reflexive researcher: A developmental approach to research methodology. Open Review of Educational Research, 4 (1), 33–45.

Article   Google Scholar  

Brahler, C. (2018). Chapter 9 “Validity in Experimental Design”. University of Dayton. Retrieved May 27, 2021, from https://www.coursehero.com/file/30778216/CHAPTER-9-VALIDITY-IN-EXPERIMENTAL-DESIGN-KEYdocx/ .

Brown, J. D. (1996). Testing in language programs. Prentice Hall Regents.

Cambridge University Press. (n.d.a). Design. In  Cambridge dictionary . Retrieved May 19, 2021, from  https://dictionary.cambridge.org/dictionary/english/design .

Cambridge University Press. (n.d.b). Method. In  Cambridge dictionary . Retrieved May 19, 2021, from https://dictionary.cambridge.org/dictionary/english/method .

Cambridge University Press. (n.d.c). Methodology. In  Cambridge dictionary . Retrieved June 8, 2021, from https://dictionary.cambridge.org/dictionary/english/methodology .

Charmaz, K. (2017). The power of constructivist grounded theory for critical inquiry. Qualitative Inquiry, 23 (1), 34–45.

Cohen, D. J., & Crabtree, B. F. (2008). Evaluative criteria for qualitative research in health care: Controversies and recommendations. Annals of Family Medicine, 6 (4), 331–339.

de Vaus, D. A. (2001). Research design in social research. Reprinted . SAGE.

Hall, W. A., & Callery, P. (2001). Enhancing the rigor of grounded theory: Incorporating reflexivity and relationality. Qualitative Health Research, 11 (2), 257–272.

Haynes, K. (2012). Reflexivity in qualitative research. In Qualitative organizational research: Core methods and current challenges (pp. 72–89).

Koch, T., & Harrington, A. (1998). Reconceptualizing rigour: The case for reflexivity. Journal of Advanced Nursing., 28 (4), 882–890.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry . Sage.

Malterud, K. (2001). Qualitative research: Standards, challenges and guidelines. The Lancet, 358 , 483–488.

Orr, K., & Bennett, M. (2009). Reflexivity in the co-production of academic-practitioner research. Qual Research in Orgs & Mgmt, 4, 85–102.

Trochim, W. (2005). Research methods: The concise knowledge base. Atomic Dog Pub.

Subramani, S. (2019). Practising reflexivity: Ethics, methodology and theory construction. Methodological Innovations , 12 (2).

Sue, V., & Ritter, L. (Eds.). (2007). Conducting online surveys . SAGE.

Yin, R. K. (1994). Discovering the future of the case study. method in evaluation research. American Journal of Evaluation, 15 (3), 283–290.

Yin, R. K. (2014). Case study research. Design and methods (5th ed.). SAGE.

Download references

Author information

Authors and affiliations.

Wirtschaft/IFZ – Campus Zug-Rotkreuz, Hochschule Luzern, Zug-Rotkreuz, Zug , Switzerland

Stefan Hunziker & Michael Blankenagel

You can also search for this author in PubMed   Google Scholar

Corresponding author

Correspondence to Stefan Hunziker .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Fachmedien Wiesbaden GmbH, part of Springer Nature

About this chapter

Hunziker, S., Blankenagel, M. (2021). Introducing Research Designs. In: Research Design in Business and Management. Springer Gabler, Wiesbaden. https://doi.org/10.1007/978-3-658-34357-6_1

Download citation

DOI : https://doi.org/10.1007/978-3-658-34357-6_1

Published : 10 November 2021

Publisher Name : Springer Gabler, Wiesbaden

Print ISBN : 978-3-658-34356-9

Online ISBN : 978-3-658-34357-6

eBook Packages : Business and Economics (German Language)

Share this chapter

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Publish with us

Policies and ethics

  • Find a journal
  • Track your research

The Four Types of Research Design — Everything You Need to Know

Jenny Romanchuk

Updated: July 23, 2024

Published: January 18, 2023

When you conduct research, you need to have a clear idea of what you want to achieve and how to accomplish it. A good research design enables you to collect accurate and reliable data to draw valid conclusions.

research design used to test different beauty products

In this blog post, we'll outline the key features of the four common types of research design with real-life examples from UnderArmor, Carmex, and more. Then, you can easily choose the right approach for your project.

Table of Contents

What is research design?

The four types of research design, research design examples.

Research design is the process of planning and executing a study to answer specific questions. This process allows you to test hypotheses in the business or scientific fields.

Research design involves choosing the right methodology, selecting the most appropriate data collection methods, and devising a plan (or framework) for analyzing the data. In short, a good research design helps us to structure our research.

Marketers use different types of research design when conducting research .

There are four common types of research design — descriptive, correlational, experimental, and diagnostic designs. Let’s take a look at each in more detail.

Researchers use different designs to accomplish different research objectives. Here, we'll discuss how to choose the right type, the benefits of each, and use cases.

Research can also be classified as quantitative or qualitative at a higher level. Some experiments exhibit both qualitative and quantitative characteristics.

research design helps in

Free Market Research Kit

5 Research and Planning Templates + a Free Guide on How to Use Them in Your Market Research

  • SWOT Analysis Template
  • Survey Template
  • Focus Group Template

Download Free

All fields are required.

You're all set!

Click this link to access this resource at any time.

Experimental

An experimental design is used when the researcher wants to examine how variables interact with each other. The researcher manipulates one variable (the independent variable) and observes the effect on another variable (the dependent variable).

In other words, the researcher wants to test a causal relationship between two or more variables.

In marketing, an example of experimental research would be comparing the effects of a television commercial versus an online advertisement conducted in a controlled environment (e.g. a lab). The objective of the research is to test which advertisement gets more attention among people of different age groups, gender, etc.

Another example is a study of the effect of music on productivity. A researcher assigns participants to one of two groups — those who listen to music while working and those who don't — and measure their productivity.

The main benefit of an experimental design is that it allows the researcher to draw causal relationships between variables.

One limitation: This research requires a great deal of control over the environment and participants, making it difficult to replicate in the real world. In addition, it’s quite costly.

Best for: Testing a cause-and-effect relationship (i.e., the effect of an independent variable on a dependent variable).

Correlational

A correlational design examines the relationship between two or more variables without intervening in the process.

Correlational design allows the analyst to observe natural relationships between variables. This results in data being more reflective of real-world situations.

For example, marketers can use correlational design to examine the relationship between brand loyalty and customer satisfaction. In particular, the researcher would look for patterns or trends in the data to see if there is a relationship between these two entities.

Similarly, you can study the relationship between physical activity and mental health. The analyst here would ask participants to complete surveys about their physical activity levels and mental health status. Data would show how the two variables are related.

Best for: Understanding the extent to which two or more variables are associated with each other in the real world.

Descriptive

Descriptive research refers to a systematic process of observing and describing what a subject does without influencing them.

Methods include surveys, interviews, case studies, and observations. Descriptive research aims to gather an in-depth understanding of a phenomenon and answers when/what/where.

SaaS companies use descriptive design to understand how customers interact with specific features. Findings can be used to spot patterns and roadblocks.

For instance, product managers can use screen recordings by Hotjar to observe in-app user behavior. This way, the team can precisely understand what is happening at a certain stage of the user journey and act accordingly.

Brand24, a social listening tool, tripled its sign-up conversion rate from 2.56% to 7.42%, thanks to locating friction points in the sign-up form through screen recordings.

different types of research design: descriptive research example.

Carma Laboratories worked with research company MMR to measure customers’ reactions to the lip-care company’s packaging and product . The goal was to find the cause of low sales for a recently launched line extension in Europe.

The team moderated a live, online focus group. Participants were shown w product samples, while AI and NLP natural language processing identified key themes in customer feedback.

This helped uncover key reasons for poor performance and guided changes in packaging.

research design example, tweezerman

Our team helps students graduate by offering:

  • A world-class citation generator
  • Plagiarism Checker software powered by Turnitin
  • Innovative Citation Checker software
  • Professional proofreading services
  • Over 300 helpful articles about academic writing, citing sources, plagiarism, and more

Scribbr specializes in editing study-related documents . We proofread:

  • PhD dissertations
  • Research proposals
  • Personal statements
  • Admission essays
  • Motivation letters
  • Reflection papers
  • Journal articles
  • Capstone projects

Scribbr’s Plagiarism Checker is powered by elements of Turnitin’s Similarity Checker , namely the plagiarism detection software and the Internet Archive and Premium Scholarly Publications content databases .

The add-on AI detector is powered by Scribbr’s proprietary software.

The Scribbr Citation Generator is developed using the open-source Citation Style Language (CSL) project and Frank Bennett’s citeproc-js . It’s the same technology used by dozens of other popular citation tools, including Mendeley and Zotero.

You can find all the citation styles and locales used in the Scribbr Citation Generator in our publicly accessible repository on Github .

  • USC Libraries
  • Research Guides

Organizing Your Social Sciences Research Paper

  • Types of Research Designs
  • Purpose of Guide
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Glossary of Research Terms
  • Reading Research Effectively
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Applying Critical Thinking
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Research Process Video Series
  • Executive Summary
  • The C.A.R.S. Model
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tiertiary Sources
  • Scholarly vs. Popular Publications
  • Qualitative Methods
  • Quantitative Methods
  • Insiderness
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Generative AI and Writing
  • USC Libraries Tutorials and Other Guides
  • Bibliography

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy and analytical approach that you have chosen in order to integrate, in a coherent and logical way, the different components of the study, thus ensuring that the research problem will be thoroughly investigated. It constitutes the blueprint for the collection, measurement, and interpretation of information and data. Note that the research problem determines the type of design you choose, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base. 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test the underlying assumptions of a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing the research design in your paper can vary considerably, but any well-developed description will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the information and/or data which will be necessary for an adequate testing of the hypotheses and explain how such information and/or data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction of your paper . You can obtain an overall sense of what to do by reviewing studies that have utilized the same research design [e.g., using a case study approach]. This can help you develop an outline to follow for your own paper.

NOTE: Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Action Research Design

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out [the "action" in action research] during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and this cyclic process repeats, continuing until a sufficient understanding of [or a valid implementation solution for] the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you ?

  • This is a collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research outcomes rather than testing theories.
  • When practitioners use action research, it has the potential to increase the amount they learn consciously from their experience; the action research cycle can be regarded as a learning cycle.
  • Action research studies often have direct and obvious relevance to improving practice and advocating for change.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you ?

  • It is harder to do than conducting conventional research because the researcher takes on responsibilities of advocating for change as well as for researching the topic.
  • Action research is much harder to write up because it is less likely that you can use a standard format to report your findings effectively [i.e., data is often in the form of stories or observation].
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action [e.g. change] and research [e.g. understanding] is time-consuming and complex to conduct.
  • Advocating for change usually requires buy-in from study participants.

Coghlan, David and Mary Brydon-Miller. The Sage Encyclopedia of Action Research . Thousand Oaks, CA:  Sage, 2014; Efron, Sara Efrat and Ruth Ravid. Action Research in Education: A Practical Guide . New York: Guilford, 2013; Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Lincoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605; McNiff, Jean. Writing and Doing Action Research . London: Sage, 2014; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

Case Study Design

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey or comprehensive comparative inquiry. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about an issue or phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a variety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and the extension of methodologies.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • Intense exposure to the study of a case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your interpretation of the findings can only apply to that particular case.

Case Studies. Writing@CSU. Colorado State University; Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Gerring, John. “What Is a Case Study and What Is It Good for?” American Political Science Review 98 (May 2004): 341-354; Greenhalgh, Trisha, editor. Case Study Evaluation: Past, Present and Future Challenges . Bingley, UK: Emerald Group Publishing, 2015; Mills, Albert J. , Gabrielle Durepos, and Eiden Wiebe, editors. Encyclopedia of Case Study Research . Thousand Oaks, CA: SAGE Publications, 2010; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causal Design

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are causal! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base. 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, rather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101. Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study. Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design Application, Strengths and Weaknesses of Cross-Sectional Studies. Healthknowledge, 2009. Cross-Sectional Study. Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies. Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design, September 26, 2008; Erickson, G. Scott. "Descriptive Research Design." In New Methods of Market Research and Analysis . (Northampton, MA: Edward Elgar Publishing, 2017), pp. 51-77; Sahin, Sagufta, and Jayanta Mete. "A Brief Study on Descriptive Research: Its Nature and Application in Social Science." International Journal of Research and Analysis in Humanities 1 (2021): 11; K. Swatzell and P. Jennings. “Descriptive Research: The Nuts and Bolts.” Journal of the American Academy of Physician Assistants 20 (2007), pp. 55-56; Kane, E. Doing Your Own Research: Basic Descriptive Research in the Social Sciences and Humanities . London: Marion Boyars, 1985.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs. School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design. Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research. Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research. Wikipedia.

Field Research Design

Sometimes referred to as ethnography or participant observation, designs around field research encompass a variety of interpretative procedures [e.g., observation and interviews] rooted in qualitative approaches to studying people individually or in groups while inhabiting their natural environment as opposed to using survey instruments or other forms of impersonal methods of data gathering. Information acquired from observational research takes the form of “ field notes ” that involves documenting what the researcher actually sees and hears while in the field. Findings do not consist of conclusive statements derived from numbers and statistics because field research involves analysis of words and observations of behavior. Conclusions, therefore, are developed from an interpretation of findings that reveal overriding themes, concepts, and ideas. More information can be found HERE .

  • Field research is often necessary to fill gaps in understanding the research problem applied to local conditions or to specific groups of people that cannot be ascertained from existing data.
  • The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and to gage the causes, consequences, and means to resolve an issue based on deliberate interaction with people in their natural inhabited spaces.
  • Enables the researcher to corroborate or confirm data by gathering additional information that supports or refutes findings reported in prior studies of the topic.
  • Because the researcher in embedded in the field, they are better able to make observations or ask questions that reflect the specific cultural context of the setting being investigated.
  • Observing the local reality offers the opportunity to gain new perspectives or obtain unique data that challenges existing theoretical propositions or long-standing assumptions found in the literature.

What these studies don't tell you

  • A field research study requires extensive time and resources to carry out the multiple steps involved with preparing for the gathering of information, including for example, examining background information about the study site, obtaining permission to access the study site, and building trust and rapport with subjects.
  • Requires a commitment to staying engaged in the field to ensure that you can adequately document events and behaviors as they unfold.
  • The unpredictable nature of fieldwork means that researchers can never fully control the process of data gathering. They must maintain a flexible approach to studying the setting because events and circumstances can change quickly or unexpectedly.
  • Findings can be difficult to interpret and verify without access to documents and other source materials that help to enhance the credibility of information obtained from the field  [i.e., the act of triangulating the data].
  • Linking the research problem to the selection of study participants inhabiting their natural environment is critical. However, this specificity limits the ability to generalize findings to different situations or in other contexts or to infer courses of action applied to other settings or groups of people.
  • The reporting of findings must take into account how the researcher themselves may have inadvertently affected respondents and their behaviors.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study. Wikipedia.

Meta-Analysis Design

Meta-analysis is an analytical methodology designed to systematically evaluate and summarize the results from a number of individual studies, thereby, increasing the overall sample size and the ability of the researcher to study effects of interest. The purpose is to not simply summarize existing knowledge, but to develop a new understanding of a research problem using synoptic reasoning. The main objectives of meta-analysis include analyzing differences in the results among studies and increasing the precision by which effects are estimated. A well-designed meta-analysis depends upon strict adherence to the criteria used for selecting studies and the availability of information in each study to properly analyze their findings. Lack of information can severely limit the type of analyzes and conclusions that can be reached. In addition, the more dissimilarity there is in the results among individual studies [heterogeneity], the more difficult it is to justify interpretations that govern a valid synopsis of results. A meta-analysis needs to fulfill the following requirements to ensure the validity of your findings:

  • Clearly defined description of objectives, including precise definitions of the variables and outcomes that are being evaluated;
  • A well-reasoned and well-documented justification for identification and selection of the studies;
  • Assessment and explicit acknowledgment of any researcher bias in the identification and selection of those studies;
  • Description and evaluation of the degree of heterogeneity among the sample size of studies reviewed; and,
  • Justification of the techniques used to evaluate the studies.
  • Can be an effective strategy for determining gaps in the literature.
  • Provides a means of reviewing research published about a particular topic over an extended period of time and from a variety of sources.
  • Is useful in clarifying what policy or programmatic actions can be justified on the basis of analyzing research results from multiple studies.
  • Provides a method for overcoming small sample sizes in individual studies that previously may have had little relationship to each other.
  • Can be used to generate new hypotheses or highlight research problems for future studies.
  • Small violations in defining the criteria used for content analysis can lead to difficult to interpret and/or meaningless findings.
  • A large sample size can yield reliable, but not necessarily valid, results.
  • A lack of uniformity regarding, for example, the type of literature reviewed, how methods are applied, and how findings are measured within the sample of studies you are analyzing, can make the process of synthesis difficult to perform.
  • Depending on the sample size, the process of reviewing and synthesizing multiple studies can be very time consuming.

Beck, Lewis W. "The Synoptic Method." The Journal of Philosophy 36 (1939): 337-345; Cooper, Harris, Larry V. Hedges, and Jeffrey C. Valentine, eds. The Handbook of Research Synthesis and Meta-Analysis . 2nd edition. New York: Russell Sage Foundation, 2009; Guzzo, Richard A., Susan E. Jackson and Raymond A. Katzell. “Meta-Analysis Analysis.” In Research in Organizational Behavior , Volume 9. (Greenwich, CT: JAI Press, 1987), pp 407-442; Lipsey, Mark W. and David B. Wilson. Practical Meta-Analysis . Thousand Oaks, CA: Sage Publications, 2001; Study Design 101. Meta-Analysis. The Himmelfarb Health Sciences Library, George Washington University; Timulak, Ladislav. “Qualitative Meta-Analysis.” In The SAGE Handbook of Qualitative Data Analysis . Uwe Flick, editor. (Los Angeles, CA: Sage, 2013), pp. 481-495; Walker, Esteban, Adrian V. Hernandez, and Micheal W. Kattan. "Meta-Analysis: It's Strengths and Limitations." Cleveland Clinic Journal of Medicine 75 (June 2008): 431-439.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

Philosophical Design

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, by what means does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Burton, Dawn. "Part I, Philosophy of the Social Sciences." In Research Training for Social Scientists . (London, England: Sage, 2000), pp. 1-5; Chapter 4, Research Methodology and Design. Unisa Institutional Repository (UnisaIR), University of South Africa; Jarvie, Ian C., and Jesús Zamora-Bonilla, editors. The SAGE Handbook of the Philosophy of Social Sciences . London: Sage, 2011; Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, DC: Falmer Press, 1994; McLaughlin, Hugh. "The Philosophy of Social Research." In Understanding Social Work Research . 2nd edition. (London: SAGE Publications Ltd., 2012), pp. 24-47; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

Sequential Design

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method.
  • This is a useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce intensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed. This provides opportunities for continuous improvement of sampling and methods of analysis.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more specific sample can be difficult.
  • The design cannot be used to create conclusions and interpretations that pertain to an entire population because the sampling technique is not randomized. Generalizability from findings is, therefore, limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Betensky, Rebecca. Harvard University, Course Lecture Note slides; Bovaird, James A. and Kevin A. Kupzyk. "Sequential Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 1347-1352; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Henry, Gary T. "Sequential Sampling." In The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman and Tim Futing Liao, editors. (Thousand Oaks, CA: Sage, 2004), pp. 1027-1028; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis. Wikipedia.

Systematic Review

  • A systematic review synthesizes the findings of multiple studies related to each other by incorporating strategies of analysis and interpretation intended to reduce biases and random errors.
  • The application of critical exploration, evaluation, and synthesis methods separates insignificant, unsound, or redundant research from the most salient and relevant studies worthy of reflection.
  • They can be use to identify, justify, and refine hypotheses, recognize and avoid hidden problems in prior studies, and explain data inconsistencies and conflicts in data.
  • Systematic reviews can be used to help policy makers formulate evidence-based guidelines and regulations.
  • The use of strict, explicit, and pre-determined methods of synthesis, when applied appropriately, provide reliable estimates about the effects of interventions, evaluations, and effects related to the overarching research problem investigated by each study under review.
  • Systematic reviews illuminate where knowledge or thorough understanding of a research problem is lacking and, therefore, can then be used to guide future research.
  • The accepted inclusion of unpublished studies [i.e., grey literature] ensures the broadest possible way to analyze and interpret research on a topic.
  • Results of the synthesis can be generalized and the findings extrapolated into the general population with more validity than most other types of studies .
  • Systematic reviews do not create new knowledge per se; they are a method for synthesizing existing studies about a research problem in order to gain new insights and determine gaps in the literature.
  • The way researchers have carried out their investigations [e.g., the period of time covered, number of participants, sources of data analyzed, etc.] can make it difficult to effectively synthesize studies.
  • The inclusion of unpublished studies can introduce bias into the review because they may not have undergone a rigorous peer-review process prior to publication. Examples may include conference presentations or proceedings, publications from government agencies, white papers, working papers, and internal documents from organizations, and doctoral dissertations and Master's theses.

Denyer, David and David Tranfield. "Producing a Systematic Review." In The Sage Handbook of Organizational Research Methods .  David A. Buchanan and Alan Bryman, editors. ( Thousand Oaks, CA: Sage Publications, 2009), pp. 671-689; Foster, Margaret J. and Sarah T. Jewell, editors. Assembling the Pieces of a Systematic Review: A Guide for Librarians . Lanham, MD: Rowman and Littlefield, 2017; Gough, David, Sandy Oliver, James Thomas, editors. Introduction to Systematic Reviews . 2nd edition. Los Angeles, CA: Sage Publications, 2017; Gopalakrishnan, S. and P. Ganeshkumar. “Systematic Reviews and Meta-analysis: Understanding the Best Evidence in Primary Healthcare.” Journal of Family Medicine and Primary Care 2 (2013): 9-14; Gough, David, James Thomas, and Sandy Oliver. "Clarifying Differences between Review Designs and Methods." Systematic Reviews 1 (2012): 1-9; Khan, Khalid S., Regina Kunz, Jos Kleijnen, and Gerd Antes. “Five Steps to Conducting a Systematic Review.” Journal of the Royal Society of Medicine 96 (2003): 118-121; Mulrow, C. D. “Systematic Reviews: Rationale for Systematic Reviews.” BMJ 309:597 (September 1994); O'Dwyer, Linda C., and Q. Eileen Wafford. "Addressing Challenges with Systematic Review Teams through Effective Communication: A Case Report." Journal of the Medical Library Association 109 (October 2021): 643-647; Okoli, Chitu, and Kira Schabram. "A Guide to Conducting a Systematic Literature Review of Information Systems Research."  Sprouts: Working Papers on Information Systems 10 (2010); Siddaway, Andy P., Alex M. Wood, and Larry V. Hedges. "How to Do a Systematic Review: A Best Practice Guide for Conducting and Reporting Narrative Reviews, Meta-analyses, and Meta-syntheses." Annual Review of Psychology 70 (2019): 747-770; Torgerson, Carole J. “Publication Bias: The Achilles’ Heel of Systematic Reviews?” British Journal of Educational Studies 54 (March 2006): 89-102; Torgerson, Carole. Systematic Reviews . New York: Continuum, 2003.

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Aug 13, 2024 12:57 PM
  • URL: https://libguides.usc.edu/writingguide
  • Interesting
  • Scholarships
  • UGC-CARE Journals

What is a Research Design? Importance and Types

Why Research Design is Important for a Researcher?

Dr. Sowndarya Somasundaram

A research design is a systematic procedure or an idea to carry out different tasks of the research study. It is important to know the research design and its types for the researcher to carry out the work in a proper way.

The purpose of research design is that enable the researcher to proceed in the right direction without any deviation from the tasks. It is an overall detailed strategy of the research process.

The design of experiments is a very important aspect of a research study. A poor research design may collapse the entire research project in terms of time, manpower, and money.

7 Importance of Research Design – iLovePhD

What is a Research Design in Research Methodology ?

A research design is a plan or framework for conducting research. It includes a set of plans and procedures that aim to produce reliable and valid data. The research design must be appropriate to the type of research question being asked and the type of data being collected.

A typical research design is a detailed methodology or a roadmap for the successful completion of any research work. ilovephd.com

Importance of Research Design

A Good research design consists of the following important points:

  • Formulating a research design helps the researcher to make correct decisions in each and every step of the study.
  • It helps to identify the major and minor tasks of the study.
  • It makes the research study effective and interesting by providing minute details at each step of the research process.
  • Based on the design of experiments (research design), a researcher can easily frame the objectives of the research work.
  • A good research design helps the researcher to complete the objectives of the study in a given time and facilitates getting the best solution for the research problems .
  • It helps the researcher to complete all the tasks even with limited resources in a better way.
  • The main advantage of a good research design is that it provides accuracy, reliability, consistency, and legitimacy to the research.

How to Create a Research Design?                      

According to Thyer, the research design has the following components:

Research Design

  • A researcher begins the study by framing the problem statement of the research work.
  • Then, the researcher has to identify the sampling points, the number of samples, the sample size, and the location.
  • The next step is to identify the operating variables or parameters of the study and detail how the variables are to be measured.
  • The final step is the collection, interpretation, and dissemination of results.

Considerations in selecting the research design

The researchers should know the various types of research designs and their applicability. The selection of a research design can only be made after a careful understanding of the different research design types . The factors to be considered in choosing a research design are

  • Qualitative Vs quantitative
  • Basic Vs applied
  • Empirical Vs Non-empirical

Types of Research Design?

There are four main types of research designs: experimental, observational, quasi-experimental, and descriptive.

  • Experimental designs: are used to test cause-and-effect relationships. In an experiment, the researcher manipulates one or more independent variables and observes the effect on a dependent variable.
  • Observational designs are used to study behavior without manipulating any variables. The researcher simply observes and records the behavior.
  • Quasi-experimental designs are used when it is not possible to manipulate the independent variable. The researcher uses a naturally occurring independent variable and controls for other variables.
  • Descriptive designs are used to describe a behavior or phenomenon. The researcher does not manipulate any variables, but simply observes and records the behavior.

I hope, this article would help you to know about what is research design, the types of research design, and what are the important points to be considered in carrying out the research work.

research design helps in

  • classification of research design
  • experimental research design
  • research design
  • research design and methodology
  • research design and methods
  • research design example
  • research design explained
  • research design in hindi
  • research design lecture
  • research design meaning
  • research design types
  • Research Methodology
  • research methods
  • types of research design
  • what is research design

Dr. Sowndarya Somasundaram

Abstract Template for Research Paper

10 types of plagiarism – every academic writer should know – updated, the harsh reality: why revoked graduate degrees aren’t easily reclaimed.

good summary of ideas

LEAVE A REPLY Cancel reply

Most popular, top 50 research institutions in india: nirf rankings 2024, top 35 scopus indexed journals in english literature, how to create graphical abstract, list of research topics in environmental engineering, indo-russian joint research call for proposals 2024, newly accepted scopus indexed journals june 2024, top 10 scopus indexed agronomy and crop science journals, best for you, 24 best online plagiarism checker free – 2024, what is phd, popular posts, popular category.

  • POSTDOC 317
  • Interesting 257
  • Journals 235
  • Fellowship 133
  • Research Methodology 102
  • All Scopus Indexed Journals 93

Mail Subscription

ilovephd_logo

iLovePhD is a research education website to know updated research-related information. It helps researchers to find top journals for publishing research articles and get an easy manual for research tools. The main aim of this website is to help Ph.D. scholars who are working in various domains to get more valuable ideas to carry out their research. Learn the current groundbreaking research activities around the world, love the process of getting a Ph.D.

Contact us: [email protected]

Google News

Copyright © 2024 iLovePhD. All rights reserved

  • Artificial intelligence

Research Design

  • In book: Research Methodology in Social Sciences (A Short Manual) (pp.175)
  • Publisher: New Delhi: Corvette

Harish K Thakur at Himachal Pradesh University

  • Himachal Pradesh University

Discover the world's research

  • 25+ million members
  • 160+ million publication pages
  • 2.3+ billion citations
  • Recruit researchers
  • Join for free
  • Login Email Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google Welcome back! Please log in. Email · Hint Tip: Most researchers use their institutional email address as their ResearchGate login Password Forgot password? Keep me logged in Log in or Continue with Google No account? Sign up

Sacred Heart University Library

Organizing Academic Research Papers: Types of Research Designs

  • Purpose of Guide
  • Design Flaws to Avoid
  • Glossary of Research Terms
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • Extending the Timeliness of a Topic Idea
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • Executive Summary
  • Background Information
  • The Research Problem/Question
  • Theoretical Framework
  • Citation Tracking
  • Content Alert Services
  • Evaluating Sources
  • Primary Sources
  • Secondary Sources
  • Tertiary Sources
  • What Is Scholarly vs. Popular?
  • Qualitative Methods
  • Quantitative Methods
  • Using Non-Textual Elements
  • Limitations of the Study
  • Common Grammar Mistakes
  • Avoiding Plagiarism
  • Footnotes or Endnotes?
  • Further Readings
  • Annotated Bibliography
  • Dealing with Nervousness
  • Using Visual Aids
  • Grading Someone Else's Paper
  • How to Manage Group Projects
  • Multiple Book Review Essay
  • Reviewing Collected Essays
  • About Informed Consent
  • Writing Field Notes
  • Writing a Policy Memo
  • Writing a Research Proposal
  • Acknowledgements

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy that you choose to integrate the different components of the study in a coherent and logical way, thereby, ensuring you will effectively address the research problem; it constitutes the blueprint for the collection, measurement, and analysis of data. Note that your research problem determines the type of design you can use, not the other way around!

General Structure and Writing Style

Action research design, case study design, causal design, cohort design, cross-sectional design, descriptive design, experimental design, exploratory design, historical design, longitudinal design, observational design, philosophical design, sequential design.

Kirshenblatt-Gimblett, Barbara. Part 1, What Is Research Design? The Context of Design. Performance Studies Methods Course syllabus . New York University, Spring 2006; Trochim, William M.K. Research Methods Knowledge Base . 2006.

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem as unambiguously as possible. In social sciences research, obtaining evidence relevant to the research problem generally entails specifying the type of evidence needed to test a theory, to evaluate a program, or to accurately describe a phenomenon. However, researchers can often begin their investigations far too early, before they have thought critically about about what information is required to answer the study's research questions. Without attending to these design issues beforehand, the conclusions drawn risk being weak and unconvincing and, consequently, will fail to adequate address the overall research problem.

 Given this, the length and complexity of research designs can vary considerably, but any sound design will do the following things:

  • Identify the research problem clearly and justify its selection,
  • Review previously published literature associated with the problem area,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem selected,
  • Effectively describe the data which will be necessary for an adequate test of the hypotheses and explain how such data will be obtained, and
  • Describe the methods of analysis which will be applied to the data in determining whether or not the hypotheses are true or false.

Kirshenblatt-Gimblett, Barbara. Part 1, What Is Research Design? The Context of Design. Performance Studies Methods Course syllabus . New Yortk University, Spring 2006.

Definition and Purpose

The essentials of action research design follow a characteristic cycle whereby initially an exploratory stance is adopted, where an understanding of a problem is developed and plans are made for some form of interventionary strategy. Then the intervention is carried out (the action in Action Research) during which time, pertinent observations are collected in various forms. The new interventional strategies are carried out, and the cyclic process repeats, continuing until a sufficient understanding of (or implement able solution for) the problem is achieved. The protocol is iterative or cyclical in nature and is intended to foster deeper understanding of a given situation, starting with conceptualizing and particularizing the problem and moving through several interventions and evaluations.

What do these studies tell you?

  • A collaborative and adaptive research design that lends itself to use in work or community situations.
  • Design focuses on pragmatic and solution-driven research rather than testing theories.
  • When practitioners use action research it has the potential to increase the amount they learn consciously from their experience. The action research cycle can also be regarded as a learning cycle.
  • Action search studies often have direct and obvious relevance to practice.
  • There are no hidden controls or preemption of direction by the researcher.

What these studies don't tell you?

  • It is harder to do than conducting conventional studies because the researcher takes on responsibilities for encouraging change as well as for research.
  • Action research is much harder to write up because you probably can’t use a standard format to report your findings effectively.
  • Personal over-involvement of the researcher may bias research results.
  • The cyclic nature of action research to achieve its twin outcomes of action (e.g. change) and research (e.g. understanding) is time-consuming and complex to conduct.

Gall, Meredith. Educational Research: An Introduction . Chapter 18, Action Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Kemmis, Stephen and Robin McTaggart. “Participatory Action Research.” In Handbook of Qualitative Research . Norman Denzin and Yvonna S. Locoln, eds. 2nd ed. (Thousand Oaks, CA: SAGE, 2000), pp. 567-605.; Reason, Peter and Hilary Bradbury. Handbook of Action Research: Participative Inquiry and Practice . Thousand Oaks, CA: SAGE, 2001.

A case study is an in-depth study of a particular research problem rather than a sweeping statistical survey. It is often used to narrow down a very broad field of research into one or a few easily researchable examples. The case study research design is also useful for testing whether a specific theory and model actually applies to phenomena in the real world. It is a useful design when not much is known about a phenomenon.

  • Approach excels at bringing us to an understanding of a complex issue through detailed contextual analysis of a limited number of events or conditions and their relationships.
  • A researcher using a case study design can apply a vaiety of methodologies and rely on a variety of sources to investigate a research problem.
  • Design can extend experience or add strength to what is already known through previous research.
  • Social scientists, in particular, make wide use of this research design to examine contemporary real-life situations and provide the basis for the application of concepts and theories and extension of methods.
  • The design can provide detailed descriptions of specific and rare cases.
  • A single or small number of cases offers little basis for establishing reliability or to generalize the findings to a wider population of people, places, or things.
  • The intense exposure to study of the case may bias a researcher's interpretation of the findings.
  • Design does not facilitate assessment of cause and effect relationships.
  • Vital information may be missing, making the case hard to interpret.
  • The case may not be representative or typical of the larger problem being investigated.
  • If the criteria for selecting a case is because it represents a very unusual or unique phenomenon or problem for study, then your intepretation of the findings can only apply to that particular case.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 4, Flexible Methods: Case Study Design. 2nd ed. New York: Columbia University Press, 1999; Stake, Robert E. The Art of Case Study Research . Thousand Oaks, CA: SAGE, 1995; Yin, Robert K. Case Study Research: Design and Theory . Applied Social Research Methods Series, no. 5. 3rd ed. Thousand Oaks, CA: SAGE, 2003.

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association--a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order--to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness--a relationship between two variables that is not due to variation in a third variable.
  • Causality research designs helps researchers understand why the world works the way it does through the process of proving a causal link between variables and eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.
  • Not all relationships are casual! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and therefore to establish which variable is the actual cause and which is the  actual effect.

Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed.  Thousand Oaks, CA: Pine Forge Press, 2007; Causal Research Design: Experimentation. Anonymous SlideShare Presentation ; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base . 2006.

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, r ather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors  often relies on cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Because of the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36;  Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Study Design 101 . Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study . Wikipedia.

Cross-sectional research designs have three distinctive features: no time dimension, a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure diffrerences between or from among a variety of people, subjects, or phenomena rather than change. As such, researchers using this design can only employ a relative passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike the experimental design where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • Provide only a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods. Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design, Application, Strengths and Weaknesses of Cross-Sectional Studies . Healthknowledge, 2009. Cross-Sectional Study . Wikipedia.

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject.
  • Descriptive research is often used as a pre-cursor to more quantitatively research designs, the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research can not be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999;  McNabb, Connie. Descriptive Research Methodologies . Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design , September 26, 2008. Explorable.com website.

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental Research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “what causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter subject behaviors or responses.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to  experimental designed research studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs . School of Psychology, University of New England, 2000; Experimental Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Trochim, William M.K. Experimental Design . Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research . Slideshare presentation.

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to. The focus is on gaining insights and familiarity for later investigation or undertaken when problems are in a preliminary stage of investigation.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumption, development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • Exploratory studies help establish research priorities.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value in decision-making.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research . Wikipedia.

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute your hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, logs, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistentally to ensure access.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

A longitudinal study follows the same sample over time and makes repeated observations. With longitudinal surveys, for example, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study and is sometimes referred to as a panel study.

  • Longitudinal data allow the analysis of duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research to explain fluctuations in the data.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study . Wikipedia.

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe (data is emergent rather than pre-existing).
  • The researcher is able to collect a depth of information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation researchd esigns account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possiblility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is studied is altered to some degree by the very presence of the researcher, therefore, skewing to some degree any data collected (the Heisenburg Uncertainty Principle).

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research. Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010.

Understood more as an broad approach to examining a research problem than a methodological design, philosophical analysis and argumentation is intended to challenge deeply embedded, often intractable, assumptions underpinning an area of study. This approach uses the tools of argumentation derived from philosophical traditions, concepts, models, and theories to critically explore and challenge, for example, the relevance of logic and evidence in academic debates, to analyze arguments about fundamental issues, or to discuss the root of existing discourse about a research problem. These overarching tools of analysis can be framed in three ways:

  • Ontology -- the study that describes the nature of reality; for example, what is real and what is not, what is fundamental and what is derivative?
  • Epistemology -- the study that explores the nature of knowledge; for example, on what does knowledge and understanding depend upon and how can we be certain of what we know?
  • Axiology -- the study of values; for example, what values does an individual or group hold and why? How are values related to interest, desire, will, experience, and means-to-end? And, what is the difference between a matter of fact and a matter of value?
  • Can provide a basis for applying ethical decision-making to practice.
  • Functions as a means of gaining greater self-understanding and self-knowledge about the purposes of research.
  • Brings clarity to general guiding practices and principles of an individual or group.
  • Philosophy informs methodology.
  • Refine concepts and theories that are invoked in relatively unreflective modes of thought and discourse.
  • Beyond methodology, philosophy also informs critical thinking about epistemology and the structure of reality (metaphysics).
  • Offers clarity and definition to the practical and theoretical uses of terms, concepts, and ideas.
  • Limited application to specific research problems [answering the "So What?" question in social science research].
  • Analysis can be abstract, argumentative, and limited in its practical application to real-life issues.
  • While a philosophical analysis may render problematic that which was once simple or taken-for-granted, the writing can be dense and subject to unnecessary jargon, overstatement, and/or excessive quotation and documentation.
  • There are limitations in the use of metaphor as a vehicle of philosophical analysis.
  • There can be analytical difficulties in moving from philosophy to advocacy and between abstract thought and application to the phenomenal world.

Chapter 4, Research Methodology and Design . Unisa Institutional Repository (UnisaIR), University of South Africa;  Labaree, Robert V. and Ross Scimeca. “The Philosophical Problem of Truth in Librarianship.” The Library Quarterly 78 (January 2008): 43-70; Maykut, Pamela S. Beginning Qualitative Research: A Philosophic and Practical Guide . Washington, D.C.: Falmer Press, 1994; Stanford Encyclopedia of Philosophy . Metaphysics Research Lab, CSLI, Stanford University, 2013.

  • The researcher has a limitless option when it comes to sample size and the sampling schedule.
  • Due to the repetitive nature of this research design, minor changes and adjustments can be done during the initial parts of the study to correct and hone the research method. Useful design for exploratory studies.
  • There is very little effort on the part of the researcher when performing this technique. It is generally not expensive, time consuming, or workforce extensive.
  • Because the study is conducted serially, the results of one sample are known before the next sample is taken and analyzed.
  • The sampling method is not representative of the entire population. The only possibility of approaching representativeness is when the researcher chooses to use a very large sample size significant enough to represent a significant portion of the entire population. In this case, moving on to study a second or more sample can be difficult.
  • Because the sampling technique is not randomized, the design cannot be used to create conclusions and interpretations that pertain to an entire population. Generalizability from findings is limited.
  • Difficult to account for and interpret variation from one sample to another over time, particularly when using qualitative methods of data collection.

Rebecca Betensky, Harvard University, Course Lecture Note slides ; Cresswell, John W. Et al. “Advanced Mixed-Methods Research Designs.” In Handbook of Mixed Methods in Social and Behavioral Research . Abbas Tashakkori and Charles Teddle, eds. (Thousand Oaks, CA: Sage, 2003), pp. 209-240; Nataliya V. Ivankova. “Using Mixed-Methods Sequential Explanatory Design: From Theory to Practice.” Field Methods 18 (February 2006): 3-20; Bovaird, James A. and Kevin A. Kupzyk. “Sequential Design.” In Encyclopedia of Research Design . Neil J. Salkind, ed. Thousand Oaks, CA: Sage, 2010; Sequential Analysis . Wikipedia.  

  • << Previous: Purpose of Guide
  • Next: Design Flaws to Avoid >>
  • Last Updated: Jul 18, 2023 11:58 AM
  • URL: https://library.sacredheart.edu/c.php?g=29803
  • QuickSearch
  • Library Catalog
  • Databases A-Z
  • Publication Finder
  • Course Reserves
  • Citation Linker
  • Digital Commons
  • Our Website

Research Support

  • Ask a Librarian
  • Appointments
  • Interlibrary Loan (ILL)
  • Research Guides
  • Databases by Subject
  • Citation Help

Using the Library

  • Reserve a Group Study Room
  • Renew Books
  • Honors Study Rooms
  • Off-Campus Access
  • Library Policies
  • Library Technology

User Information

  • Grad Students
  • Online Students
  • COVID-19 Updates
  • Staff Directory
  • News & Announcements
  • Library Newsletter

My Accounts

  • Interlibrary Loan
  • Staff Site Login

Sacred Heart University

FIND US ON  

Research Assistant, Graphic Design & Communications

Research Assistant, Graphic Design & Communications

New research assistant opportunity.

About the Communications Research Assistant Team: Are you passionate about communications and graphic design? The BKC communications team is seeking one or more creative, highly motivated candidates to work on a range of writing, project management, and digital media tasks that help tell the Berkman Klein story to the public and target audiences. You may be asked to help with any aspect of BKC’s communications activities, including graphic design, writing and editing website and social media content, promoting events, taking photos and videos, and developing creative ways to share and amplify research, education, programs, and other activities of the Center. The right candidate is sharp, flexible, and reliable; has excellent organizational skills to juggle multiple tasks, people, and projects; is a strong collaborator with the emotional intelligence to work well with different personalities and work styles; has an excellent understanding of social media; and has experience completing graphic design projects.

About the Graphic Design Position:

This position is currently scoped to work on a range of communications projects, but will focus on graphic design and social media.

  • Lead graphic design projects for the Berkman Klein website, newsletter, and social media using software including InDesign, Photoshop, Canva, other Adobe Suite products.
  • Produce, film, photograph, and edit videos and/or multimedia assets using iPhone, Zoom, PremierePro, and Adobe Express.
  • Ensure all visual assets adhere to brand standards and appropriate dimensions, exhibiting extraordinary attention to detail and consistency.
  • Support file management of all digital media assets to ensure accessibility and consistent storage practices and standardized file naming conventions.
  • Conceptualize and execute new design concepts for research releases—including reports, supplementary materials, web and social media assets,
  • Work with stakeholders on and off campus, including staff, faculty, visiting scholars, fellows, students, and other subject matter experts.
  • Manage print production as needed.

Eligibility/Other Information: This position is currently hybrid. To be eligible for this position, you must be a currently enrolled undergraduate or graduate student at Harvard University. 

  • In-person attendance at certain events will be required.
  • The time commitment would range between 7-14 hours per week.
  • The ideal start date for this position is as soon as possible.
  • Unless otherwise noted, the hourly wage for this position is $21 per hour.
  • No other benefits are provided.
  • We do not have the ability to provide authorization to work in the U.S.

To Apply: Applications will be collected through this application form . The form will be closed when applications are no longer being accepted.

Required Materials for All Applicants Include:

  • A current resume or CV.
  • A brief cover letter describing your skills, interests, and what brought you to Berkman Klein Center.
  • A portfolio of 3-5 examples of your graphic design work , including at least 3 samples produced for social media. If you have never done this before, just give it a try! We are all learning.

All materials will be collected as sharable links via the application form linked above.

Commitment to Diversity: The work and well-being of the Berkman Klein Center for Internet & Society are profoundly strengthened by the diversity of our network and our differences in background, culture, experience, national origin, religion, gender, gender identity, sexual orientation, race, ethnicity, age, ability, and more. We actively seek and welcome applications from people of color including members of Black, Indigenous, Asian, Latinx, and other communities; women, members of the LGBTQIA+ community; people with disabilities; and people at the intersections of these identities, from across the spectrum of disciplines and methods. For more information about accessibility at Harvard for applying to this or other positions, we encourage you to look for more resources online.

About the Berkman Klein Center: Harvard University’s Berkman Klein Center for Internet & Society is a University-wide research center and one of the largest and most influential conveners and accelerators of scholars, technologists, activists and makers working on cyberspace and related law and public policy matters in the public interest.

Apply  

This paper is in the following e-collection/theme issue:

Published on 15.8.2024 in Vol 26 (2024)

Using Short-Form Videos to Get Clinical Trial Newcomers to Sign Up: Message-Testing Experiment

Authors of this article:

Author Orcid Image

Original Paper

  • Sisi Hu 1 * , PhD   ; 
  • Ciera E Kirkpatrick 2 * , PhD   ; 
  • Namyeon Lee 3 * , PhD   ; 
  • Yoorim Hong 4 * , MA   ; 
  • Sungkyoung Lee 4 * , PhD   ; 
  • Amanda Hinnant 4 * , PhD  

1 School of Journalism and Strategic Media, University of Arkansas, Fayetteville, AR, United States

2 College of Journalism & Mass Communications, University of Nebraska-Lincoln, Lincoln, NE, United States

3 Department of Mass Communication, University of North Carolina at Pembroke, Pembroke, NC, United States

4 School of Journalism, University of Missouri, Columbia, MO, United States

*all authors contributed equally

Corresponding Author:

Sisi Hu, PhD

School of Journalism and Strategic Media

University of Arkansas

129 Kimpel Hall, 280 N. McIlroy Avenue

Fayetteville, AR, 72701

United States

Phone: 1 479 575 6717

Email: [email protected]

Background: Recruiting participants for clinical trials poses challenges. Major barriers to participation include psychological factors (eg, fear and mistrust) and logistical constraints (eg, transportation, cost, and scheduling). The strategic design of clinical trial messaging can help overcome these barriers. While strategic communication can be done through various channels (eg, recruitment advertisements), health care providers on the internet have been found to be key sources for communicating clinical trial information to US adults in the social media era.

Objective: This study aims to examine how communication source (ie, medical doctors and peers) and message framing of TikTok videos (ie, psychological and logistical framing) influence clinical trial–related attitudes, perceptions, and sign-up behaviors under the guidance of the integrated behavioral model.

Methods: This study used a 2 (source: doctor vs peer) × 2 (framing: psychological vs logistical) between-participant factorial design web-based experiment targeting adults in the United States who had never participated in clinical trials (ie, newcomers). A Qualtrics panel was used to recruit and compensate the study respondents (n=561). Participants viewed short-form videos with doctors or peers, using psychological or logistical framing. The main outcome measures included perceived source credibility, self-efficacy, attitude toward clinical trial participation, behavioral intention, and sign-up behavior. Structural equation modeling was used to analyze the direct and indirect effects of message factors on the outcome variables. Source (doctor=1; peer=0) and framing (psychological=1; logistical=0) were dummy-coded.

Results: Doctor-featured messages led to greater perceived source credibility (β=.31, P <.001), leading to greater self-efficacy (95% CI 0.13-0.30), which in turn enhanced behavioral intention (95% CI 0.12-0.29) and clinical trial sign-up behavior (95% CI 0.02-0.04). Logistical barrier–framed messages led to greater self-efficacy (β=–.09, P =.02), resulting in higher intention to participate in clinical trials (95% CI –0.38 to –0.03) and improved sign-up behavior (95% CI –0.06 to –0.004). Logistical barrier–framed messages were also directly associated with an increased likelihood of signing up for a clinical trial (β=–.08, P =.03). The model accounted for 21% of the variance in clinical trial sign-up behavior. Attitude did not significantly affect behavioral intention in this study (β=.08, P =.14), and psychological and logistical barrier–framed messages did not significantly differ in attitudes toward clinical trial participation (β=–.04, P =.09).

Conclusions: These findings advance our understanding of how people process popular message characteristics in short-form videos and lend practical guidance for communicators. We encourage medical professionals to consider short-form video sites (eg, TikTok and Instagram Reels) as effective tools for discussing clinical trials and participation opportunities. Specifically, featuring doctors discussing efforts to reduce logistical barriers is recommended. Our measuring of actual behavior as an outcome is a rare and noteworthy contribution to this research.

Introduction

The development and advancement of medical treatments rely heavily on the willingness of individuals to participate in clinical trial research. However, clinical trials have historically had low enrollment rates, especially among underrepresented groups [ 1 , 2 ]. Research aimed at increasing willingness to participate in clinical trials has examined several factors impeding participation [ 3 , 4 ], including a lack of access [ 4 , 5 ], psychological barriers (such as issues related to fear or a lack of trust in research, doctors, and the process), and a lack of understanding of the process and value of clinical trials [ 6 ]. Others are deterred by logistical barriers, including financial constraints, time commitment, travel difficulties, and interference with other obligations (eg, work and family) [ 3 , 4 ]. Each barrier requires different solutions and communication strategies to effectively increase overall clinical trial participation [ 3 ]. For instance, Clark et al [ 3 ] explain that providing compensation, transportation, and flexible hours can help to lessen time and resource-related constraints (ie, logistical barriers); whereas barriers related to fear and a lack of trust (ie, psychological barriers) can be alleviated by explaining the voluntary nature of participation, emphasizing participant safety, and clarifying the participation process. Such actionable recommendations require adjustments by trial administrators (eg, ensuring compensation or help with scheduling and transportation), but also have important communication implications as the information related to overcoming the barriers must be shared with prospective participants.

While communication to prospective participants can be done through various channels (eg, recruitment ads), health care providers on the internet have been found to be critical sources for communicating clinical trial information to US adults [ 7 ]. Social media use has saturated society, with 70% of the US population using at least one form of social media [ 8 ]. More specifically, short-form video has widely been used for social media apps such as TikTok, a video sharing social media app that allows users to create and host short video content (the worldwide number of TikTok users doubled from 291.4 million in 2019 to 655.9 million in 2021) [ 9 ]. Short-form videos, typically lasting from a few seconds to a few minutes, encompass a wide variety of entertaining content, including comedy, dance, music, cooking, fitness, and other daily activities [ 10 ]. With social media skyrocketing in popularity, short-form videos are believed to have public health implications as people use TikTok, specifically, to disseminate health-related content [ 11 ]. This includes many conversations related to clinical trial research. A May 2023 search indicates that since the platform’s worldwide launch in 2018, the hashtags “#clinicaltrial” and “#clinicalresearch” have received 43.4 million and 22.4 million views, respectively. TikTok has made it increasingly cost-effective for communicators of all types to disseminate information, as anyone with a smartphone can easily record and edit videos directly in the application.

Communication Source

The most popular sources communicating health information on TikTok are health care professionals (eg, doctors and clinical researchers) and general TikTok users [ 12 , 13 ]. Doctors and other health care professionals have used the platform to cover a variety of topics, including COVID-19, vaping, chronic pulmonary obstructive disease, and diabetes [ 11 - 13 ]. On the topic of clinical trials, doctors on TikTok have shared information on topics such as finding trials [ 14 ], upcoming trials [ 15 ], the importance of trials [ 16 ], and what the participation process is like [ 17 ]. Much of the content aims to help potential participants feel more comfortable. For instance, Dr Donald Garcia, medical director at Austin Clinical Trial Partners, explains in his video that institutional review boards are in place to help keep participants safe [ 17 ].

Likewise, some general TikTok users have taken to the platform to share their firsthand experience of being in a clinical trial themselves. Some record themselves within the actual clinical trial setting to provide an inside look at what the environment and procedures are like [ 18 ], while others detail their experience from home and sometimes answer questions that other users have about the experience [ 19 ]. In many cases, these videos advocate for others to participate, too. This sometimes includes the participants sharing details of the monetary compensation they have made from clinical trials and encouraging others to participate for this reason [ 20 ]. Testimonials from TikTok users serve as peer-to-peer exchanges of experience-based health information.

The effectiveness of these 2 dominant source types is likely to depend on how the audience perceives each source’s credibility. McCroskey and Teven [ 21 ] suggested that 3 key components comprise credibility: competence, trustworthiness, and goodwill. As prior clinical trial participants have firsthand experience with participation, they may be perceived to have high trustworthiness and believability, which are both important for message acceptance [ 22 ]. Furthermore, as peer-type sources have similarities to the audience, this can also help to improve message perceptions and effectiveness [ 23 ].

Doctors, on the other hand, will likely generate high levels of perceived credibility because of their extensive education and experience (ie, competence). Merely having a respected, authoritative title of “Dr,” alone, can lead others to respect them and listen to what they have to say [ 24 ]. Besides their competence, health care providers have been found to be the most trusted source of information about clinical trials in comparison to government health agencies, health organizations, and others such as support groups, drug companies, families, and friends [ 1 ]. In addition, research examining the effects of various sources communicating general health information via health podcasts showed that doctors were found to elicit greater perceived source competence and trustworthiness in comparison to peers (individuals with firsthand experience with the health topic) [ 25 ]. In addition to competence and trust, doctors and peers discussing clinical trials on TikTok may also generate perceptions of goodwill. Sharing information on TikTok is voluntary, which may help users feel that the doctors and peers have positive intent, truly wanting to help and care for others.

Altogether, given doctors’ high levels of competence (relative to peer sources) and their likelihood of generating perceptions of trust and goodwill, this study predicts that clinical trial messaging on TikTok coming from doctors will result in greater perceptions of source credibility than similar messages that come from general TikTok peers (hypothesis 1 [H1]): doctor-featured messages will lead to greater perceived source credibility toward clinical trial participation than peer-featured messages.

Attitude change can occur through the peripheral route or central route based on individuals’ levels of ability and motivation to think (elaboration likelihood model [ELM] [ 26 ]). Source credibility has been found to influence attitude through the peripheral route because it is easy to process [ 27 ]. In the case of doctors on TikTok, their credibility (conveyed through their title, introduction, appearance, etc) can serve as peripheral cues (eg, “experts are generally correct”) that improve message acceptance [ 26 ]. Since perceived credibility affects message processing and message acceptance [ 22 , 28 ], doctor-featured messages are also expected to cultivate improved audience attitudes and perceptions of self-efficacy. Generally, people rely on sources they trust and reject information from sources they do not trust [ 29 ], and acceptance of content influences one’s behavior [ 30 ]. Thus, if the source is more credible, individuals will be more likely to perceive the recommended health behavior from the source as effective and feasible. Within the context of TikTok and health content, Song et al [ 13 ] found that the information quality of peer TikTok videos was low and engagement (eg, likes, shares) with health professional videos was high. Based on the findings, they suspected that the health professionals conveyed a greater level of expertise that then generated greater credibility perceptions, which could, in turn, improve the adoption of the message recommendations. Research has also shown that increased source credibility leads to favorable attitudes [ 31 ] and increased self-efficacy [ 32 ] about suggested health behavior. Based on these findings, we hypothesize that as the doctor-featured clinical trial messages increase perceptions of credibility, this will lead to more favorable attitudes and increased self-efficacy (hypothesis 2 [H2]): Doctor-featured messages will lead to (1) more favorable attitudes and (2) greater self-efficacy toward clinical trial participation than peer-featured messages through increased source credibility.

Then, as attitude and self-efficacy are larger drivers of behavioral intention (integrated behavioral model [IBM] [ 33 , 34 ]), the increased attitude and self-efficacy (generated by the doctor-featured messages) will lead to greater intentions to participate in a future trial (hypothesis 3 [H3]): Doctor-featured messages will lead to greater behavioral intention toward clinical trial participation than peer-featured messages through increased (1) attitudes and (2) self-efficacy.

Message Framing

Within the clinical trial messaging produced by both doctors and prior clinical trial participants, there is an opportunity to emphasize particular information (eg, information about the benefits of participating and the safety of participating). Such emphasis is a form of message framing and is a means of making particular information salient to the audience [ 35 - 37 ]. Framing has been recommended as a strategy for helping to overcome barriers associated with clinical trial participation [ 3 , 38 , 39 ]. In specific, emphasis framing—which involves designing messages to focus on particular subsets of information related to an overall topic [ 40 ]—has been recommended to help prospective participants see how relevant barriers can be overcome (eg, emphasizing safety precautions may help reduce psychological barriers to participation) [ 3 ]. Framing can help improve message processing by providing a simplified structure focused on the most important information [ 41 , 42 ]. This leads the audience to focus on and better remember the emphasized information [ 43 , 44 ]. Thus, in the case of clinical trial messaging, when the emphasis is on information that reduces concerns related to the common barriers, the audience will be more likely to process this information, which can then lead to the message favorably affecting their attitudes and behaviors [ 45 ]. In addition to having a more favorable attitude toward participation, their self-efficacy for participating should be improved as well, given that the emphasized information provides solutions to the barriers, which should help the barriers seem like less of a deterrent.

In this study, the TikTok messaging is designed to make salient information related to overcoming psychological and logistical barriers. Half of the messages talk about clinical trials with message frames focusing on overcoming psychological barriers, highlighting participants’ well-being and safety during a clinical trial to help prospective participants feel more comfortable about the process (per recommendations from Clark et al [ 3 ]). Meanwhile, the logistical barrier–framed messages use the suggestions of Clark et al [ 3 ] of focusing on overcoming common logistical issues that impede participation (eg, transportation, scheduling, and finances) to help prospective participants envision how joining a trial could be possible for them [ 3 ]. That said, research investigating framing in this context is still new. Logistical barrier–framed messages have not been tested in this manner, and TikTok is still a new, understudied media platform. Specifically, with a diverse sample of individuals who have never participated in a trial before, it is not clear which barrier will be more relevant to them, and thus which barrier-framing will be more effective. Psychological and logistical barrier–framed messaging may be equally effective at improving attitudes and self-efficacy related to clinical trials, or 1 of the 2 framing types might have greater persuasive influence. To explore this, we ask the following question (research question 1 [RQ1]): How does framing (focused on psychological barriers vs logistical barriers) influence (1) attitudes and (2) self-efficacy toward clinical trial participation?

If framing influences attitudes and self-efficacy, the framing may also affect intentions related to participation (through attitudes and self-efficacy) given the relationship between attitudes, self-efficacy, and behavior (IBM [ 33 , 34 ]). Thus, we also ask the following question (research question 2 [RQ2]): How does framing influence intention toward clinical trial participation through (1) attitudes and (2) self-efficacy toward clinical trial participation?

Pathways to Sign-Up Behavior

In addition to behavioral intention, in this study, we aim to also measure the actual behavior of our participants—whether or not they choose to be redirected (after the study) to a page where they can sign up to participate in future clinical trials. Measuring an actual behavior is valuable because it helps to better understand the persuasive effect of the messages.

While IBM focuses heavily on the formation of behavioral intention, it also explains the importance of environmental constraints and an individual’s knowledge or skills (related to behavior performance) in impacting actual behavior change [ 46 , 47 ]. Environmental constraints are contextual factors that either help or hinder behavior performance [ 47 ]. Fishbein and Yzer [ 48 ] suggested that health educators should evaluate the potential effectiveness of addressing underlying beliefs or tackling environmental constraints, and then utilize the most appropriate one for the situation. For example, a prospective participant may not intend to participate in a trial because of their beliefs that trials are unsafe (eg, psychological barriers). In this case, a message strategy should be devised to focus on improving the factors influencing intention (eg, attitudes toward the behavior). On the other hand, if a prospective participant has the intrinsic motivation to participate in a trial but might encounter an environmental constraint like transportation issues (eg, logistical barriers), then an effective message strategy is to focus on addressing how to overcome the environmental constraint. In this case, by removing environmental constraints, the performance of the behavior (ie, clinical trial participation) is more likely [ 49 ].

Therefore, in this context, there may be indirect pathways in which the source and framing of the messages influence willingness to sign up for a future clinical trial. For instance, a doctor-featured message may increase perceived source credibility which may then improve attitude and self-efficacy which may then improve behavioral intentions and ultimately their behavior. Additionally, there may also be a direct effect of environmental constraints (ie, the contextual factors hindering the behavior) on behavior. For instance, if an individual does not have the literal means (eg, transportation) to get to a clinical trial, they will not participate. Based on this, we predict that our logistical barrier–framed messages (which provide information about overcoming common logistical issues) may have a direct effect on participants’ behavior.

To explore the indirect pathways, we ask the following question (research question 3 [RQ3]): What are the indirect pathways that source and framing influence signing up for a clinical trial?

To examine the direct pathway to sign-up behavior, we pose the following hypothesis (hypothesis 4 [H4]): Logistical barrier–framed messages will lead to a greater likelihood of signing up for a clinical trial than psychological barrier–framed messages.

Combined Effects of Communication Source and Message Framing

Previous research has examined the interaction between communication sources and message framing [ 31 , 50 , 51 ]. However, these studies primarily focused on gain and loss frames (or relatedly, positive and negative frames), and the results were inconsistent. For example, Jones et al [ 31 ] found the expert source or positive-framed messages generated more behavioral intention than other conditions (eg, nonexpert/positive), whereas Borah and Xiao [ 50 ] and Huang and Liu [ 51 ] did not find significant interaction effects between framing and source. Considering the novelty of our study, which examines psychological and logistical barrier–framed messages for the first time, it is unclear which barrier frame would be more effective and how it interacts with the message source. Therefore, we ask the following question (research question 4 [RQ4]): How do framing (focused on psychological barriers vs logistical barriers) and message source (doctor vs peer) jointly influence attitudes and self-efficacy, subsequently affecting behavioral intention and sign-up behavior regarding clinical trial participation?

Study Overview

This study aims to examine the effects of short-form video’s message features on clinical trial–related attitudes and behaviors. We test the effects of the 2 communication sources, doctors and peers, commonly seen on TikTok and other social media, as well as the effects of discussing 2 different barriers to clinical trials (psychological and logical framing) in the videos. Informed by the integrated behavioral model [ 34 ], the ELM [ 26 ], and framing [ 36 , 37 ], this study uses structural equational modeling to test our predictions: The source and message framing of videos indirectly influence behaviors related to clinical trial participation through attitude and self-efficacy, and message framing will directly affect signing up for a clinical trial. We also capture the actual behavior of our participants’ willingness to join a sign-up list for a clinical trial and be contacted by clinical researchers about upcoming clinical participation opportunities. The inclusion of such an outcome is novel and allows us to avoid relying solely on behavioral intention as an indicator of actual behavior outcomes within this context. Figure 1 illustrates the conceptual framework for the above-proposed hypotheses and research questions.

research design helps in

Experimental Design

This study used a 2 (source: doctor vs peer) × 2 (framing: psychological vs logistical) between-subject factorial design web-based experiment targeting adults in the United States who have never participated in clinical trials. A total of 4 conditions were formed (ie, doctor source/psychological barrier–framed, doctor source/logistical barrier–framed, peer source/psychological barrier–framed, and peer source/logistical barrier–framed). For each condition, 3 messages—featuring 3 different clinical trial topics (ie, sleep, stress, and caffeine)—were used to account for message variance [ 52 ].

Respondents and Procedure

Participants were eligible for this study if they were aged 18 years or older and had no prior clinical trial experience. A Qualtrics panel was used to recruit and compensate the study respondents in June 2022. The questionnaire began with informed consent, demographics (ie, age, gender, education, income, political ideology, and race), a question regarding their prior clinical trial participation, and a video test to ensure respondents could see and hear videos. After passing the video test, respondents answered questions measuring their preexisting attitude toward clinical trial participation and were then randomly assigned to 1 of the 4 experimental conditions where they viewed 3 TikTok videos in that condition. The presentation order of the 3 videos was fully randomized to eliminate response bias related to the order of the video presentation. After each of the 3 videos, respondents answered questions checking the manipulation and measuring source credibility and attitudes toward clinical trial participation. After viewing all 3 videos, respondents answered questions measuring self-efficacy toward clinical trial participation and intention to participate in a clinical trial. Last, an IRB-approved fabricated scenario was presented, and respondents were asked to choose whether they were willing to sign up to join a clinical trial participant list and be contacted by clinical researchers about upcoming clinical trial participation opportunities right after this survey. After answering this question, respondents saw the debriefing statement. In the questionnaire, items associated with the same variable were randomized to prevent order-related bias. Each questionnaire page contained between 1 and 5 questions, with a maximum of 67 pages (screens) a respondent could view. Respondents could not review or change their answers during the survey, but they could withdraw their responses at any time.

Qualtrics panel experts handled visitor tracking, participation rates, completion rates, cookies, and IP address duplication checks. The authors double-checked the final data received from the Qualtrics panel. After removing the low-quality responses (n=7), which included speeders (respondents who spent less than half-median amount of time on the survey based on Qualtrics panel expert criteria in the industry), straightliners (respondents who consistently gave identical responses, such as all “7” or “4,” to a series of questions using the same response scale), and respondents with missing data, a total of 561 respondents were used in the data analysis (doctor source/psychological barrier–framed=144, doctor source/logistical barrier–framed=139, peer source/psychological barrier–framed=144, and peer source/logistical barrier–framed=134).

Stimuli and Manipulation

The stimuli were TikTok videos recorded by 3 female actors on 3 different clinical trial topics (ie, sleep, stress, and caffeine). Each actor focused on one topic and recorded a video for each of the 4 experimental conditions. Each video includes 5 shots: introduction, clinical trial topic overview, mention of barriers, overcoming the barriers, and recommendations. Each shot varied to reflect the 4 experimental conditions. The key messages were also added as captions to each video. All other video features were kept similar across the 4 experimental conditions, including the video length (around 90 seconds), TikTok logo, and caption color and font. All 12 transcripts were edited by a professional news editor, and all 12 videos were reviewed by the research team. Examples of message transcripts are provided in Multimedia Appendix 1 .

The source referred to the type of speakers in the video, including doctor source (ie, clinical researcher) and peer source (ie, prior participant). In the doctor-featured videos, actors wore professional white lab coats in an office setting with a blank wall background, while in the peer-featured videos, actors wore casual clothes in a home setting. Specifically, in each doctor-featured message, the actor introduced herself with the “Dr” honorific and as a clinical trial researcher and then brought up the clinical trial topic she worked on. She then talked about the barriers people may have in terms of clinical trial participation (ie, psychological or logistical) and how clinical researchers attempt to address the barriers. Last, the actor recommended that the audience sign up for clinical trials and reiterated that they attempted to address the barriers. In a peer-featured message, the actor introduced herself as a clinical trial participant and then shared her experience of clinical trial participation. She started by mentioning her barriers before clinical trial participation, and then she talked about how her barriers had been resolved during the clinical trial participation. Finally, the actor recommended the audience sign up for clinical trials and reiterated the clinical researchers’ attempts to address the barriers.

Framing referred to the type of barrier information made salient in the post, including psychological barriers and logistical barriers. Psychological barrier–framed videos focused on addressing psychological barriers to participating in clinical trials (eg, fear about clinical trial participation and medical mistrust) by highlighting participants’ well-being and safety during a clinical trial. Logistical barrier–framed videos centered on overcoming logistical barriers to clinical trial participation (eg, cost and flexibility) by emphasizing the monetary reward and flexibility of participation. These frame wordings were created based on the suggestion from Clark et al [ 3 ]. The framing was manipulated in the mention of barriers, overcoming the barriers, and recommendations sections in the videos. A manipulation check was performed to ensure the 2 framing categories were distinguished in the videos. After each video, respondents were asked to indicate what the video emphasized (1=participants’ well-being and safety, 5=Monetary reward and flexibility of participation). An independent samples t test showed a significant difference between the psychological barrier–framed videos (mean 1.54, SD 0.84; n=288) and the logistical barrier–framed videos (mean 3.88, SD 0.94; n=273), t 545.55 =−31.04 (2-tailed), P <.001. Thus, the psychological barrier–framed videos were perceived as emphasizing participants’ well-being and safety more whereas the logistical barrier–framed videos were perceived as emphasizing monetary reward and flexibility of participation more.

Measurements

Preexisting attitude toward clinical trial participation assessed respondents’ positive or negative feelings toward clinical trial participation before exposure to the stimuli. Respondents were asked to rate the degree of their perception of clinical trial participation on a 5-item, 5-point semantic differential scale adapted from Kang and Lee [ 53 ], such as bad/good and negative/positive. (across the conditions, Cronbach α=0.87-0.92.)

Perceived source credibility assessed respondents’ perceptions of the video speaker’s competence, goodwill, and trustworthiness with an 18-item scale adapted from McCroskey and Teven [ 21 ]. Respondents were asked to rate their perception of the speaker on a 5-point bipolar scale, including items such as untrained/trained, cares about me/does not care about me, and untrustworthy/trustworthy (across the conditions, Cronbach α=0.96-0.98).

Self-efficacy measured respondents’ belief in their capabilities to participate in clinical trials with a 5-point Likert scale of 2 items adapted from Lee et al [ 54 ]. Items included, “for me, to participate in a clinical trial would be difficult (1) to easy (5)” and “How certain are you that you could participate in a clinical trial? (1=Not at all certain; 5=Very certain)” (across the conditions, Cronbach α=0.82-0.86).

Attitude toward clinical trial participation assessed respondents’ positive or negative feelings toward clinical trial participation after clinical trial to the stimuli with the same scale used to measure preexisting attitudes toward clinical trial participation. (across the conditions, Cronbach α=0.96-0.97).

Behavioral intention assessed the likelihood that respondents would participate in clinical trials with a 5-point Likert scale of 2 items adapted from Chen et al [ 55 ]. Respondents were asked to rate their opinion on 2 items from strongly disagree (1) to strongly agree (5), including “I plan on joining a clinical trial” and “I am willing to join a clinical trial” (across the conditions, Cronbach α=0.83-0.91).

Sign-up behavior was measured by whether the respondents clicked “Yes” to move forward to a sign-up page to participate in future clinical trials. Although this question did not measure participants’ behavior beyond clicking “Yes” to share their email address, the behavior of choosing to go to the sign-up page is a reasonably accurate indicator for actual sign-up behavior (Yes=45.6%, 256/561). After participants answered this question, they were not directed to a sign-up page. Instead, they saw a debriefing statement that explained the true purpose of this question, and they were given information on how to find clinical trial participation options.

Ethical Considerations

This study received approval from the institutional review board of the University of Missouri (IRB #2054423). Informed consent was obtained from participants at the beginning of the survey. The consent form explained that the survey would take approximately 15-20 minutes, emphasized voluntary and anonymous participation, assured participants that their data would be stored securely in a password-protected electronic format, and clarified that researchers would only report aggregate data. Participants who did not agree with the consent form had the option to opt out. A Qualtrics panel was used to recruit and compensate the study participants at the agreed-upon rate established between the participants and Qualtrics.

Statistical Analysis

The hypothesized model was tested using structural equation modeling with the lavaan package for R [ 56 ]. All models were estimated using robust maximum likelihood unless bootstrapping was used, in which case ML estimation was adopted. Robust maximum likelihood was used because this model includes a binary outcome variable (ie, sign-up) [ 57 ]. Following Kline’s (2015) 2-step process, a measurement model was first fit to verify the factor structure of clinical trial attitude, efficacy, and behavioral intention. Subsequently, to test the hypotheses, a structural model was fit in which source credibility, clinical trial attitudes, and self-efficacy were regressed on dummy-coded message source (doctor=1, peer=0), framing (psychological barrier frame=1, logistical barrier frame=0), and the interaction term of source and framing. The behavioral intention was regressed on clinical trial attitudes and self-efficacy. Sign-up behavior was regressed on behavioral intention, message source, framing, and the interaction term of source and framing. All variables in the model were regressed on the control variable (ie, preexisting attitudes toward clinical trial participation). To maintain the model simplicity, however, the interaction term of source and framing was omitted from the final model as it did not exert any significant effect.

Sample Overview

The average age of the sample was 49 (SD 17.52) years, and there were more females (301/561, 53.7%) than males (256/561, 45.6%) and 4 participants did not disclose. Respondents were primarily White (433/561, 77.2%), followed by Black or African American (52/461, 9.3%), Asian (39/561, 7%), and others (30/561, 5.3%). Approximately half of the respondents completed high school or some college (286/561, 51%), 13.7% (n=77) respondents had an associate’s degree, and 32.8% (n=184) respondents had a bachelor degree or above. From liberal (1) to conservative (7), the sample leaned conservative (mean 3.93, SD 1.59).

Modeling Results

Model fit for the measurement model was acceptable based on the criteria from MacCallum et al [ 58 ] and Little [ 59 ] ( χ 2 24 =92.6, P <.001); robust root-mean-square error of approximation=0.063 (90% CI 0.079-0.097); robust comparative fit index=0.984; robust nonnormed fit index/Tucker Lewis index=0.975; and standardized root mean residual=0.026. The final structural model ( Figure 2 ) achieved good model fit based on the same criteria as above ( χ 2 65 =206.01, P <.001); robust root-mean-square error of approximation=0.066 (90% CI 0.056-0.076); robust comparative fit index=0.974; robust nonnormed fit index/Tucker Lewis index=0.965; and standardized root mean residual=0.04.

research design helps in

Hypotheses Testing

H1 predicted that doctor-featured messages would lead to greater perceived source credibility toward clinical trial participation than peer-featured messages. Consistent with this prediction, compared with peer-featured messages, doctor-featured messages were significantly associated with increased perceived source credibility (β=.31, P <.001).

H2 predicted that doctor-featured messages would lead to (1) more favorable attitudes and (2) greater self-efficacy toward clinical trial participation than peer-featured messages through increased source credibility. In support of this hypothesis, there were significant positive indirect effects of doctor-featured messages on clinical trial attitudes (95% CI 0.48-0.84) and self-efficacy toward clinical trial participation (95% CI 0.13-0.30) through the increased source credibility, as evidenced by a 5000 bootstrapped 95% CI that did not contain zero.

H3 hypothesized that doctor-featured messages would lead to greater behavioral intention toward clinical trial participation than peer-featured messages through increased (1) attitudes and (2) self-efficacy. The model showed clinical trial attitudes were not significantly associated with the increased intention to participate in clinical trials (β=.08, P =.14); thus, inconsistent with H3(1), doctor-featured messages did not lead to greater clinical trial participation intention than peer-featured messages through increased attitudes. However, self-efficacy was significantly positively associated with clinical trial participation intention (β=.67, P <.001); therefore, in support of H3(2), doctor-featured messages led to greater clinical trial participation intention than peer-featured messages through increased perceived source credibility and self-efficacy (95% CI 0.12-0.29).

RQ1 examined the influence of framing on (1) attitudes and (2) self-efficacy toward clinical trial participation. The results showed the effects of psychological barrier–framed messages and logistical barrier–framed messages did not significantly differ in attitudes toward clinical trial participation (β=–.04, P =.09). However, logistical barrier–framed messages led to significantly greater self-efficacy toward clinical trial participation than psychological barrier–framed messages (β=–.09, P =.02).

RQ2 investigated the indirect effects of framing on the intention to participate in clinical trials through (1) attitudes and (2) self-efficacy. Because different framing foci did not lead to significantly different direct effects on attitudes (shown in RQ1(1)), the indirect effect of framing on intention to participate in clinical trials through attitudes could not be significant (RQ2(1)). For RQ2(2), however, logistical barrier–framed messages led to significantly greater intention to participate in clinical trials than psychological barrier–framed messages through increased self-efficacy (95% CI –0.38 to –0.03).

RQ3 explored the indirect effects of source and framing on sign-up behavior. There are 2 significant pathways. First, doctor-featured messages led to greater perceived source credibility, which, in turn, led to greater self-efficacy and then increased behavioral intention, which, last, boosted the clinical trial sign-up behavior (95% CI 0.02-0.04). Second, logistical barrier–framed messages led to greater self-efficacy, which, in turn, increased intention to participate in clinical trials, which, last, improved the clinical trial sign-up behavior (95% CI –0.06 to –0.004).

H4 posited a direct effect of framing on sign-up behavior, such that logistical barrier–framed messages would lead to a greater likelihood of signing up for a clinical trial than psychological barrier–framed messages. Consistent with this prediction, compared with psychological barrier–framed messages, logistical barrier–framed messages were associated with an increased likelihood of signing up for a clinical trial (β=–.08, P =.03).

RQ4 explored the joint effects of framing and sources. There was no significant interaction between these 2 variables, as tested in the modeling section. However, their combined effects were notable. The results revealed that framing and sources independently influenced sign-up behavior. Together, the model accounted for 21% of the variance in the likelihood of signing up for a clinical trial.

Summary of Findings

This research offers several important findings that illuminate strategic ways to use short-form social media videos, such as those on TikTok, to improve perceptions of clinical trials and increase enrollment. The findings suggested that doctor-featured messages led to greater perceived source credibility, leading to greater self-efficacy, subsequently enhancing behavioral intention and clinical trial sign-up behavior. Logistical barrier–framed messages led to greater self-efficacy, resulting in higher intention to participate in clinical trials and improved sign-up behavior. Logistical barrier–framed messages were also directly associated with an increased likelihood of signing up for a clinical trial. The theoretical and practical implications, limitations, and future directions of this study are discussed below.

Finding Implications

First, using doctors (ie, clinical researchers) as the source sharing the information made a difference in how participants assessed credibility (H1). The doctors were perceived as more credible than the peer clinical-trial participants, and the credibility afforded to the doctors led to better attitudes about clinical trials and an increased feeling of self-efficacy to engage in clinical trials among the participants (H2). This finding accords with previous ELM research that found higher perceived credibility resulted in enhanced favorable attitudes [ 22 , 28 ]. Extending the path even further, the perceived self-efficacy, cultivated in part by the doctors’ credibility, also led to greater intention to sign up for clinical trials (H3(2)) and ultimately increased clinical trial sign-up behavior (RQ3). This finding confirmed the significant mediating role of self-efficacy in the relationship between source credibility and behavioral intention. Unexpectedly, attitudes were found not to mediate this relationship (H3(1)), supporting the idea that the ELM is more a model of attitude change than persuasion as strong attitudes do not necessarily induce behavioral change particularly if self-efficacy is lacking [ 60 ]. Petty et al [ 61 ] stressed the importance of attitude change in eliciting behavioral change by explaining that self-efficacy can be “positive attitudes toward the self” (distinct from attitudes toward a behavior) and suggested scholars should identify the most important type of attitudes for predicting a particular health behavior. Despite varying explanations, our findings indicate that future scholars should incorporate self-efficacy into the ELM, either as an additional construct or a critical type of attitude in health communication. It is noteworthy that, as far as the authors are aware, this is the first ELM study that captures persuasive effects on a type of behavioral enactment in the form of clicking to sign up for future clinical trials.

Second, this research contributes to IBM research in that it demonstrated the effects of the messages on attitude, self-efficacy (RQ1), behavioral intention (RQ2), and sign-up behavior (RQ3/H4) on TikTok within the context of health communication. Fishbein and Yzer [ 48 ] suggested that changing the psychological determinants to perform a behavior would be more efficient than changing skills and environmental constraints because the latter is often difficult to change. However, this study found that certain environmental constraints, such as transportation issues (ie, logistical barriers), can be communicated and can directly lead to the desired behavioral performance. As IBM affords the flexibility to communicate about a wide range of determinants, a proper IBM-based research agenda could allow communicators to target a health behavior that is stymied by both psychological and logistical barriers.

Third, our findings about framing revealed that the logistical frame outperformed the psychological frame (RQ2(2), H4), which accords with expectations that different frames would lead to different reactions [ 36 , 37 ]. More specifically, framing according to perceived barriers to clinical trials and their solutions, was predicted to have persuasive power [ 3 , 38 , 39 ]. Regardless of source type, the messages that were framed to address how to overcome logistical barriers had a direct effect on increasing participants’ clinical trial sign-up behavior (H4). This represents an original contribution, given that logistical barrier–framing has not yet been tested. The power of focusing on logistical problems and how to overcome them is promising for both theory and practice.

Finally, despite the lack of interaction between source and framing, the finding demonstrated doctor sourcing and logistical barrier–framing independently but cumulatively contributed to increasing sign-up behavior (RQ4). This finding, along with the abovementioned findings regarding the independent effects of source and framing, suggests that incorporating doctor sources and logistical barrier–framing in health communication, particularly through short-form videos, can yield more successful outcomes in terms of behavioral change.

Limitations and Future Research

One limitation of this research is that it is difficult to measure full commitment to participate in a clinical trial. We designed the sign-up option to replicate the first behavioral step that a person could take when seeking out clinical trials. It is one of several steps a person would need to take to fully participate in a clinical trial, thereby representing behavior change. Another limitation of this study is the omission of perceived norms toward clinical trials in the integrated behavioral model. This decision assumed that clinical trials are less prevalent compared with other health behaviors, and therefore perceived norms may not exert significant variance. However, it is important to note that exposure to videos featuring prior clinical trial participants may enhance perceived norms by increasing the perception that other people with similar barriers are engaging in the behavior (ie, descriptive norms). Thus, future studies should explore the influence of source and framing on perceived norms and their subsequent influence on behavioral intentions and actual behaviors. Last, it is important to note that the sample in this study mainly consisted of White individuals with a conservative leaning. We suggest that scholars exercise caution when generalizing the current findings to significantly different racial and ideological groups.

Future research should also create similar stimuli to test the same framing and sourcing patterns with different health topics that might involve psychological and logistical barriers, such as blood donation. Furthermore, investigating source and framing preferences among diverse racial and age groups is also essential, given disparities in clinical trial participation within specific demographics [ 2 ]. Additionally, future research could examine whether one’s level of familiarity and experience with TikTok (and other related platforms) moderate the effects of these message features.

Conclusion and Practical Recommendations

Given the effectiveness of the doctor-sourced videos in this study, we recommend that medical professionals take to short-form video sites such as TikTok to discuss clinical trials and participation opportunities. Recent recommendations have advised health professionals to leverage social media platforms like TikTok to disseminate health information [ 11 , 13 ], and this study provides evidence for this recommendation within this specific context of clinical trials. As none of the participants in this research had ever been part of a clinical trial before, this research is especially useful for outreach to people who have likely given clinical trials little thought or who have considered participating but did not follow through. This study mirrors one step in the recruiting process, which is getting potential participants to agree to receive information about future clinical trials. Recruiters could see a similar willingness to sign up for clinical trials if their promotional material involved doctors speaking about how they have worked to reduce logistical barriers. With TikTok users already turning to this platform to share clinical-trial experiences and seek related content (as evidenced by the popularity of the #clinicaltrial and #clinicalresearch hashtags), TikTok may be an especially useful mode of communication. This study serves to inform those interested in taking advantage of this new modality for public health messaging.

Acknowledgments

This study was supported by the University of Missouri Research Council Grant (URC-21-030).

Data Availability

The data sets generated or analyzed during this study are available from the corresponding author upon request.

Authors' Contributions

All authors contributed to the conceptualization and methodology of the study. Data curation was conducted by NL and SH. SH performed the formal analysis and visualization. AH and SL were responsible for funding acquisition, project administration, and supervision. The investigation involved all authors, and they also provided the necessary resources and validation. SH and CEK wrote the original draft, and all authors participated in the review and editing of the draft.

Conflicts of Interest

None declared.

Message transcripts for the sleep topic.

  • National Cancer Institute. Clinical trial participation among US adults. Health Information National Trends Survey HINTS Briefs. 2022. URL: https://hints.cancer.gov/docs/Briefs/HINTS_Brief_48.pdf [accessed 2023-05-27]
  • Clinical trial diversity. US Food and Drug Administration. URL: https://www.fda.gov/consumers/minority-health-and-health-equity/clinical-trial-diversity [accessed 2023-05-27]
  • Clark LT, Watkins L, Piña IL, Elmer M, Akinboboye O, Gorham M, et al. Increasing diversity in clinical trials: overcoming critical barriers. Curr Probl Cardiol. 2019;44(5):148-172. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Meng J, McLaughlin M, Pariera K, Murphy S. A comparison between Caucasians and African Americans in willingness to participate in cancer clinical trials: the roles of knowledge, distrust, information sources, and religiosity. J Health Commun. 2016;21(6):669-677. [ CrossRef ] [ Medline ]
  • Kim SH, Tanner A, Friedman DB, Foster C, Bergeron C. Barriers to clinical trial participation: comparing perceptions and knowledge of African American and White South Carolinians. J Health Commun. 2015;20(7):816-826. [ CrossRef ] [ Medline ]
  • Tanner A, Kim SH, Friedman DB, Foster C, Bergeron CD. Barriers to medical research participation as perceived by clinical trial investigators: communicating with rural and African American communities. J Health Commun. 2015;20(1):88-96. [ CrossRef ] [ Medline ]
  • Yadav S, Todd A, Patel K, Tabriz AA, Nguyen O, Turner K, et al. Public knowledge and information sources for clinical trials among adults in the USA: evidence from a health information national trends survey in 2020. Clin Med (Lond). 2022;22(5):416-422. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Social media fact sheet. Pew Research Center. 2021. URL: https://www.pewresearch.org/internet/fact-sheet/social-media/ [accessed 2023-05-27]
  • Yuen M. TikTok users worldwide (2020-2025). Insider Intelligence. URL: https://www.insiderintelligence.com/charts/global-tiktok-user-stats/ [accessed 2023-05-27]
  • Zhang X, Wu Y, Liu S. Exploring short-form video application addiction: socio-technical and attachment perspectives. Telemat Inform. 2019;42:101243. [ CrossRef ]
  • Comp G, Dyer S, Gottlieb M. Is TikTok the next social media frontier for medicine? AEM Educ Train. 2021;5(3):1-4. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kong W, Song S, Zhao YC, Zhu Q, Sha L. TikTok as a health information source: assessment of the quality of information in diabetes-related videos. J Med Internet Res. 2021;23(9):e30409. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Song S, Xue X, Zhao YC, Li J, Zhu Q, Zhao M. Short-video apps as a health information source for chronic obstructive pulmonary disease: information quality assessment of TikTok videos. J Med Internet Res. 2021;23(12):e28318. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • 1. Google search Pharma clinical trial list 2. search www.clinicaltrials.gov #obesity #clinicaltrials #obesitymedicine #greenscreen #greenscreenvideo. TikTok. URL: https:/​/www.​tiktok.com/​@michaelalbertmd/​video/​7176312644490562859?is_copy_url=1&is_from_webapp=v1&item_id=7176312644490562859&q=%23clinicaltrial&t=1672869700860 [accessed 2023-05-27]
  • Have you heard of the new MS clinical trial, ATA-188?! for my FULL review – check my YouTube channel! TikTok. URL: https://www.tiktok.com/@drgretchenpt/video/7111861106326637870 [accessed 2023-05-27]
  • There are many successful clinical trials! let's talk about one! #clinicaltrial #cancermedicine #tiktokoncdoc #oncologist #curecancer #cll #cance. TikTok. URL: https://www.tiktok.com/@draljazayrly/video/7025666462362750213 [accessed 2023-05-27]
  • As a clinical trial participant, you are not a “guinea pig” or “lab rat” but an integral part of the research team #clinical trial #mental health #fyp. TikTok. URL: https://www.tiktok.com/@atxctp/video/7170355183497825582 [accessed 2023-05-27]
  • This is my first attempt at a voiceover lol but yeah this is my first day doing a clinical trial, follow for more updates #flucamp #clinicaltrial #nhs #london. TikTok. URL: https://www.tiktok.com/@faithlarks/video/7184495430183554310 [accessed 2023-05-27]
  • Part 1 #covid19 #clinicaltrial #vaccine participant timeline of Pfizer’s clinical trial. TikTok. URL: https://www.tiktok.com/@essdeedub/video/6970333799423036678 [accessed 2023-05-27]
  • I did my first clinical trial in 5 years! just google clinical trials to find one near you! it was 6 days in there then I returned for 4 out patient visits.it was an appetite suppressant. use your money wisely! #clinicaltrial #studies #gatekeep #nogatekeeping. TikTok. URL: https://www.tiktok.com/@chinyereogazi/video/7146248914302225706 [accessed 2023-05-27]
  • McCroskey JC, Teven JJ. Goodwill: a reexamination of the construct and its measurement. Commun Monogr. 1999;66(1):90-103. [ CrossRef ]
  • Dong Z. How to persuade adolescents to use nutrition labels: effects of health consciousness, argument quality, and source credibility. Asian J Commun. 2015;25(1):84-101. [ CrossRef ]
  • Paek HJ, Hove T, Ju Jeong H, Kim M. Peer or expert? Int J Advert. 2011;30(1):161-188. [ CrossRef ]
  • Rhoads KVL, Cialdini RB. The business of influence: principles that lead to success in commercial settings. In: Dillard JP, Pfau M, editors. The Persuasion Handbook: Developments in Theory and Practice. Thousand Oaks, California. Sage; 2002:513-542.
  • Kirkpatrick CE, Lee S. The impact of source and message relevance on audience responses to health podcasts. Commun Rep. 2021;34(2):78-91. [ CrossRef ]
  • Petty R, Cacioppo J. Communication and Persuasion: Central and Peripheral Routes to Attitude Change. Berlin/Heidelberg, Germany. Springer-Verlag; 1986.
  • Petty RE, Cacioppo JT, Goldman R. Personal involvement as a determinant of argument-based persuasion. J Pers Soc Psychol. 1981;41(5):847-855. [ CrossRef ]
  • Wilson EJ, Sherrell DL. Source effects in communication and persuasion research: a meta-analysis of effect size. JAMS. 1993;21:101-112. [ CrossRef ]
  • Malka A, Krosnick JA, Langer G. The association of knowledge with concern about global warming: trusted information sources shape public thinking. Risk Anal. 2009;29(5):633-647. [ CrossRef ] [ Medline ]
  • Dutta-Bergman MJ. The linear interaction model of personality effects in health communication. Health Commun. 2003;15(1):101-115. [ CrossRef ] [ Medline ]
  • Jones LW, Sinclair RC, Courneya KS. The effects of source credibility and message framing on exercise intentions, behaviors, and attitudes: an integration of the elaboration likelihood model and prospect theory. J Appl Soc Pyschol. 2006;33(1):179-196. [ CrossRef ]
  • De Meulenaer S, De Pelsmacker P, Dens N. Power distance, uncertainty avoidance, and the effects of source credibility on health risk message compliance. Health Commun. 2018;33(3):291-298. [ CrossRef ] [ Medline ]
  • Fishbein M. The role of theory in HIV prevention. AIDS Care. 2000;12(3):273-278. [ CrossRef ] [ Medline ]
  • Fishbein M. An integrative model for behavioral predictionits application to health promotion. In: DiClemente RJ, Crosby RA, Kegler MC, editors. Emerging Theories in Health Promotion Practice and Research 2nd ed. New York City, United States. Jossey-Bass/Wiley; 2009:215-234.
  • Entman RM. Framing: toward clarification of a fractured paradigm. J Commun. 1993;43(4):51-58. [ CrossRef ]
  • Kelly BJ, Hornik RC. Effects of framing health messages in terms of benefits to loved ones or others: an experimental study. Health Commun. 2016;31(10):1284-1290. [ CrossRef ] [ Medline ]
  • Uskul AK, Oyserman D. When message-frame fits salient cultural-frame, messages feel more persuasive. Psychol Health. 2010;25(3):321-337. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Hu S, Kirkpatrick CE, Hong Y, Lee N, Lee S, Hinnant A. Improving rural white men's attitudes toward clinical trial messaging and participation: effects of framing, exemplars and trust. Health Educ Res. 2022;37(6):476-494. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Kirkpatrick CE, Hu S, Lee N, Hong Y, Lee S, Hinnant A. Overcoming black Americans' psychological and cognitive barriers to clinical trial participation: effects of news framing and exemplars. Health Commun. 2023;38(12):2663-2675. [ CrossRef ] [ Medline ]
  • Druckman JN. The implications of framing effects for citizen competence. Polit Behav. 2001;23(3):225-256. [ CrossRef ]
  • Davies J, Mabin VJ. Knowledge management and the framing of information: a contribution to OR/MS practice and pedagogy. J Oper Res Soc. 2017;52(8):856-872. [ CrossRef ]
  • Zaller J, Feldman S. A simple theory of the survey response: answering questions versus revealing preferences. Am J Political Sci. 1992;36(3):579-616. [ CrossRef ]
  • Campbell HA, Hawk D. Al jazeera's framing of social media during the arab spring. CyberOrient. 2020;6(1):34-51. [ CrossRef ]
  • Wasike BS. Framing news in 140 characters: how social media editors frame the news and interact with audiences via twitter. Glob Media J Can Ed. 2013;6(1):5-23.
  • Tewksbury D, Scheufele D. News framing theory and research. In: Oliver MB, Raney AA, Bryant J, editors. Media effects. 4 ed. London, United Kingdom. Routledge; 2019:51-68.
  • Fishbein M, Cappella JN. The role of theory in developing effective health communications. J Commun. Aug 2006;56(s1):S1-S17. [ CrossRef ]
  • Yzer M. The integrative model of behavior prediction as a tool for designing health messages. In: Designing Messages for Health Communication Campaigns: Theory and Practice. United Kingdom. Sage; 2012:21-40.
  • Fishbein M, Yzer MC. Using theory to design effective health behavior interventions. Commun Theory. 2003;13(2):164-183. [ CrossRef ]
  • Montaño D, Kasprzyk D. Theory of reasoned action, theory of planned behavior,the integrated behavioral model. In: Glanz K, Rimer BK, Viswanath K, editors. Health Behavior: Theory, Research, and Practice. 5 ed. Hoboken , NJ. Jossey-Bass; 2015:168-222.
  • Borah P, Xiao X. The importance of 'likes': the interplay of message framing, source, and social endorsement on credibility perceptions of health information on facebook. J Health Commun. 2018;23(4):399-411. [ CrossRef ] [ Medline ]
  • Huang Y, Liu W. Promoting COVID-19 vaccination: the interplay of message framing, psychological uncertainty, and public agency as a message source. Sci Commun. 2021;44(1):3-29. [ CrossRef ]
  • Thorson E, Wicks R, Leshner G. Experimental methodology in journalism and mass communication research. J Mass Commun Q. 2012;89(1):112-124. [ CrossRef ]
  • Kang H, Lee MJ. Designing anti-binge drinking prevention messages: message framing vs. evidence type. Health Commun. 2018;33(12):1494-1502. [ CrossRef ] [ Medline ]
  • Lee S, Cappella JN, Lerman C, Strasser AA. Effects of smoking cues and argument strength of antismoking advertisements on former smokers' self-efficacy, attitude, and intention to refrain from smoking. Nicotine Tob Res. 2013;15(2):527-533. [ FREE Full text ] [ CrossRef ] [ Medline ]
  • Chen T, Dai M, Xia S, Zhou Y. Do messages matter? investigating the combined effects of framing, outcome uncertainty, and number format on COVID-19 vaccination attitudes and intention. Health Commun. 2022;37(8):944-951. [ CrossRef ] [ Medline ]
  • Rosseel Y. Lavaan: an R package for structural equation modeling. J Stat Softw. 2012;48(2):1-36. [ CrossRef ]
  • Bandalos DL. Relative performance of categorical diagonally weighted least squares and robust maximum likelihood estimation. Struct Equ Model: Multidiscip J. 2014;21(1):102-116. [ CrossRef ]
  • MacCallum RC, Browne MW, Sugawara HM. Power analysis and determination of sample size for covariance structure modeling. Psychol Methods. 1996;1(2):130-149. [ CrossRef ]
  • Little TD. Longitudinal Structural Equation Modeling. New York, NY. The Guilford Press; 2013.
  • O'Keefe D. The elaboration likelihood model. In: Dillard JP, Shen L, editors. The SAGE Handbook of Persuasion: Developments in Theory and Practice. London, UK. Sage Publications; 2013:137-149.
  • Petty R, Barden J, Wheeler S. The elaboration likelihood model of persuasion: developing health promotions for sustained behavioral change. In: DiClemente RJ, Crosby RA, Kegler M, editors. Emerging Theories in Health Promotion Practice and Research. San Francisco, CA. Jossey-Bass/Wiley; 2009:185-214.

Abbreviations

elaboration likelihood model
hypothesis 1
hypothesis 2
hypothesis 3
hypothesis 4
integrated behavioral model
research question 1
research question 2
research question 3
research question 4

Edited by T de Azevedo Cardoso; submitted 03.06.23; peer-reviewed by K Turner, M El Tantawi; comments to author 13.10.23; revised version received 20.10.23; accepted 12.04.24; published 15.08.24.

©Sisi Hu, Ciera E Kirkpatrick, Namyeon Lee, Yoorim Hong, Sungkyoung Lee, Amanda Hinnant. Originally published in the Journal of Medical Internet Research (https://www.jmir.org), 15.08.2024.

This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in the Journal of Medical Internet Research (ISSN 1438-8871), is properly cited. The complete bibliographic information, a link to the original publication on https://www.jmir.org/, as well as this copyright and license information must be included.

Organizing Your Social Sciences Research Paper: Types of Research Designs

  • Purpose of Guide
  • Writing a Research Proposal
  • Design Flaws to Avoid
  • Independent and Dependent Variables
  • Narrowing a Topic Idea
  • Broadening a Topic Idea
  • The Research Problem/Question
  • Academic Writing Style
  • Choosing a Title
  • Making an Outline
  • Paragraph Development
  • The C.A.R.S. Model
  • Background Information
  • Theoretical Framework
  • Citation Tracking
  • Evaluating Sources
  • Reading Research Effectively
  • Primary Sources
  • Secondary Sources
  • What Is Scholarly vs. Popular?
  • Is it Peer-Reviewed?
  • Qualitative Methods
  • Quantitative Methods
  • Common Grammar Mistakes
  • Writing Concisely
  • Avoiding Plagiarism [linked guide]
  • Annotated Bibliography
  • Grading Someone Else's Paper

Introduction

Before beginning your paper, you need to decide how you plan to design the study .

The research design refers to the overall strategy that you choose to integrate the different components of the study in a coherent and logical way, thereby, ensuring you will effectively address the research problem; it constitutes the blueprint for the collection, measurement, and analysis of data. Note that your research problem determines the type of design you should use, not the other way around!

De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Trochim, William M.K. Research Methods Knowledge Base . 2006.

General Structure and Writing Style

The function of a research design is to ensure that the evidence obtained enables you to effectively address the research problem logically and as unambiguously as possible . In social sciences research, obtaining information relevant to the research problem generally entails specifying the type of evidence needed to test a theory, to evaluate a program, or to accurately describe and assess meaning related to an observable phenomenon.

With this in mind, a common mistake made by researchers is that they begin their investigations far too early, before they have thought critically about what information is required to address the research problem. Without attending to these design issues beforehand, the overall research problem will not be adequately addressed and any conclusions drawn will run the risk of being weak and unconvincing. As a consequence, the overall validity of the study will be undermined.

The length and complexity of describing research designs in your paper can vary considerably, but any well-developed design will achieve the following :

  • Identify the research problem clearly and justify its selection, particularly in relation to any valid alternative designs that could have been used,
  • Review and synthesize previously published literature associated with the research problem,
  • Clearly and explicitly specify hypotheses [i.e., research questions] central to the problem,
  • Effectively describe the data which will be necessary for an adequate testing of the hypotheses and explain how such data will be obtained, and
  • Describe the methods of analysis to be applied to the data in determining whether or not the hypotheses are true or false.

The research design is usually incorporated into the introduction and varies in length depending on the type of design you are using. However, you can get a sense of what to do by reviewing the literature of studies that have utilized the same research design. This can provide an outline to follow for your own paper.

NOTE : Use the SAGE Research Methods Online and Cases and the SAGE Research Methods Videos databases to search for scholarly resources on how to apply specific research designs and methods . The Research Methods Online database contains links to more than 175,000 pages of SAGE publisher's book, journal, and reference content on quantitative, qualitative, and mixed research methodologies. Also included is a collection of case studies of social research projects that can be used to help you better understand abstract or complex methodological concepts. The Research Methods Videos database contains hours of tutorials, interviews, video case studies, and mini-documentaries covering the entire research process.

Creswell, John W. and J. David Creswell. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 5th edition. Thousand Oaks, CA: Sage, 2018; De Vaus, D. A. Research Design in Social Research . London: SAGE, 2001; Gorard, Stephen. Research Design: Creating Robust Approaches for the Social Sciences . Thousand Oaks, CA: Sage, 2013; Leedy, Paul D. and Jeanne Ellis Ormrod. Practical Research: Planning and Design . Tenth edition. Boston, MA: Pearson, 2013; Vogt, W. Paul, Dianna C. Gardner, and Lynne M. Haeffele. When to Use What Research Design . New York: Guilford, 2012.

Video content

Videos in Business and Management , Criminology and Criminal Justice , Education , and Media, Communication and Cultural Studies specifically created for use in higher education.

A literature review tool that highlights the most influential works in Business & Management, Education, Politics & International Relations, Psychology and Sociology. Does not contain full text of the cited works. Dates vary.

Encyclopedias, handbooks, ebooks, and videos published by Sage and CQ Press. 2000 to present

Causal Design

Definition and Purpose

Causality studies may be thought of as understanding a phenomenon in terms of conditional statements in the form, “If X, then Y.” This type of research is used to measure what impact a specific change will have on existing norms and assumptions. Most social scientists seek causal explanations that reflect tests of hypotheses. Causal effect (nomothetic perspective) occurs when variation in one phenomenon, an independent variable, leads to or results, on average, in variation in another phenomenon, the dependent variable.

Conditions necessary for determining causality:

  • Empirical association -- a valid conclusion is based on finding an association between the independent variable and the dependent variable.
  • Appropriate time order -- to conclude that causation was involved, one must see that cases were exposed to variation in the independent variable before variation in the dependent variable.
  • Nonspuriousness -- a relationship between two variables that is not due to variation in a third variable.

What do these studies tell you ?

  • Causality research designs assist researchers in understanding why the world works the way it does through the process of proving a causal link between variables and by the process of eliminating other possibilities.
  • Replication is possible.
  • There is greater confidence the study has internal validity due to the systematic subject selection and equity of groups being compared.

What these studies don't tell you ?

  • Not all relationships are casual! The possibility always exists that, by sheer coincidence, two unrelated events appear to be related [e.g., Punxatawney Phil could accurately predict the duration of Winter for five consecutive years but, the fact remains, he's just a big, furry rodent].
  • Conclusions about causal relationships are difficult to determine due to a variety of extraneous and confounding variables that exist in a social environment. This means causality can only be inferred, never proven.
  • If two variables are correlated, the cause must come before the effect. However, even though two variables might be causally related, it can sometimes be difficult to determine which variable comes first and, therefore, to establish which variable is the actual cause and which is the  actual effect.

Beach, Derek and Rasmus Brun Pedersen. Causal Case Study Methods: Foundations and Guidelines for Comparing, Matching, and Tracing . Ann Arbor, MI: University of Michigan Press, 2016; Bachman, Ronet. The Practice of Research in Criminology and Criminal Justice . Chapter 5, Causation and Research Designs. 3rd ed. Thousand Oaks, CA: Pine Forge Press, 2007; Brewer, Ernest W. and Jennifer Kubn. “Causal-Comparative Design.” In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 125-132; Causal Research Design: Experimentation. Anonymous SlideShare Presentation ; Gall, Meredith. Educational Research: An Introduction . Chapter 11, Nonexperimental Research: Correlational Designs. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007; Trochim, William M.K. Research Methods Knowledge Base . 2006.

Cohort Design

Often used in the medical sciences, but also found in the applied social sciences, a cohort study generally refers to a study conducted over a period of time involving members of a population which the subject or representative member comes from, and who are united by some commonality or similarity. Using a quantitative framework, a cohort study makes note of statistical occurrence within a specialized subgroup, united by same or similar characteristics that are relevant to the research problem being investigated, r ather than studying statistical occurrence within the general population. Using a qualitative framework, cohort studies generally gather data using methods of observation. Cohorts can be either "open" or "closed."

  • Open Cohort Studies [dynamic populations, such as the population of Los Angeles] involve a population that is defined just by the state of being a part of the study in question (and being monitored for the outcome). Date of entry and exit from the study is individually defined, therefore, the size of the study population is not constant. In open cohort studies, researchers can only calculate rate based data, such as, incidence rates and variants thereof.
  • Closed Cohort Studies [static populations, such as patients entered into a clinical trial] involve participants who enter into the study at one defining point in time and where it is presumed that no new participants can enter the cohort. Given this, the number of study participants remains constant (or can only decrease).
  • The use of cohorts is often mandatory because a randomized control study may be unethical. For example, you cannot deliberately expose people to asbestos, you can only study its effects on those who have already been exposed. Research that measures risk factors often relies upon cohort designs.
  • Because cohort studies measure potential causes before the outcome has occurred, they can demonstrate that these “causes” preceded the outcome, thereby avoiding the debate as to which is the cause and which is the effect.
  • Cohort analysis is highly flexible and can provide insight into effects over time and related to a variety of different types of changes [e.g., social, cultural, political, economic, etc.].
  • Either original data or secondary data can be used in this design.
  • In cases where a comparative analysis of two cohorts is made [e.g., studying the effects of one group exposed to asbestos and one that has not], a researcher cannot control for all other factors that might differ between the two groups. These factors are known as confounding variables.
  • Cohort studies can end up taking a long time to complete if the researcher must wait for the conditions of interest to develop within the group. This also increases the chance that key variables change during the course of the study, potentially impacting the validity of the findings.
  • Due to the lack of randominization in the cohort design, its external validity is lower than that of study designs where the researcher randomly assigns participants.

Healy P, Devane D. “Methodological Considerations in Cohort Study Designs.” Nurse Researcher 18 (2011): 32-36; Glenn, Norval D, editor. Cohort Analysis . 2nd edition. Thousand Oaks, CA: Sage, 2005; Levin, Kate Ann. Study Design IV: Cohort Studies. Evidence-Based Dentistry 7 (2003): 51–52; Payne, Geoff. “Cohort Study.” In The SAGE Dictionary of Social Research Methods . Victor Jupp, editor. (Thousand Oaks, CA: Sage, 2006), pp. 31-33; Study Design 101 . Himmelfarb Health Sciences Library. George Washington University, November 2011; Cohort Study . Wikipedia.

Cross-Sectional Design

Cross-sectional research designs have three distinctive features: no time dimension; a reliance on existing differences rather than change following intervention; and, groups are selected based on existing differences rather than random allocation. The cross-sectional design can only measure differences between or from among a variety of people, subjects, or phenomena rather than a process of change. As such, researchers using this design can only employ a relatively passive approach to making causal inferences based on findings.

  • Cross-sectional studies provide a clear 'snapshot' of the outcome and the characteristics associated with it, at a specific point in time.
  • Unlike an experimental design, where there is an active intervention by the researcher to produce and measure change or to create differences, cross-sectional designs focus on studying and drawing inferences from existing differences between people, subjects, or phenomena.
  • Entails collecting data at and concerning one point in time. While longitudinal studies involve taking multiple measures over an extended period of time, cross-sectional research is focused on finding relationships between variables at one moment in time.
  • Groups identified for study are purposely selected based upon existing differences in the sample rather than seeking random sampling.
  • Cross-section studies are capable of using data from a large number of subjects and, unlike observational studies, is not geographically bound.
  • Can estimate prevalence of an outcome of interest because the sample is usually taken from the whole population.
  • Because cross-sectional designs generally use survey techniques to gather data, they are relatively inexpensive and take up little time to conduct.
  • Finding people, subjects, or phenomena to study that are very similar except in one specific variable can be difficult.
  • Results are static and time bound and, therefore, give no indication of a sequence of events or reveal historical or temporal contexts.
  • Studies cannot be utilized to establish cause and effect relationships.
  • This design only provides a snapshot of analysis so there is always the possibility that a study could have differing results if another time-frame had been chosen.
  • There is no follow up to the findings.

Bethlehem, Jelke. "7: Cross-sectional Research." In Research Methodology in the Social, Behavioural and Life Sciences . Herman J Adèr and Gideon J Mellenbergh, editors. (London, England: Sage, 1999), pp. 110-43; Bourque, Linda B. “Cross-Sectional Design.” In  The SAGE Encyclopedia of Social Science Research Methods . Michael S. Lewis-Beck, Alan Bryman, and Tim Futing Liao. (Thousand Oaks, CA: 2004), pp. 230-231; Hall, John. “Cross-Sectional Survey Design.” In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 173-174; Helen Barratt, Maria Kirwan. Cross-Sectional Studies: Design, Application, Strengths and Weaknesses of Cross-Sectional Studies . Healthknowledge, 2009. Cross-Sectional Study . Wikipedia.

Descriptive Design

Descriptive research designs help provide answers to the questions of who, what, when, where, and how associated with a particular research problem; a descriptive study cannot conclusively ascertain answers to why. Descriptive research is used to obtain information concerning the current status of the phenomena and to describe "what exists" with respect to variables or conditions in a situation.

  • The subject is being observed in a completely natural and unchanged natural environment. True experiments, whilst giving analyzable data, often adversely influence the normal behavior of the subject [a.k.a., the Heisenberg effect whereby measurements of certain systems cannot be made without affecting the systems].
  • Descriptive research is often used as a pre-cursor to more quantitative research designs with the general overview giving some valuable pointers as to what variables are worth testing quantitatively.
  • If the limitations are understood, they can be a useful tool in developing a more focused study.
  • Descriptive studies can yield rich data that lead to important recommendations in practice.
  • Appoach collects a large amount of data for detailed analysis.
  • The results from a descriptive research cannot be used to discover a definitive answer or to disprove a hypothesis.
  • Because descriptive designs often utilize observational methods [as opposed to quantitative methods], the results cannot be replicated.
  • The descriptive function of research is heavily dependent on instrumentation for measurement and observation.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 5, Flexible Methods: Descriptive Research. 2nd ed. New York: Columbia University Press, 1999; Given, Lisa M. "Descriptive Research." In Encyclopedia of Measurement and Statistics . Neil J. Salkind and Kristin Rasmussen, editors. (Thousand Oaks, CA: Sage, 2007), pp. 251-254; McNabb, Connie. Descriptive Research Methodologies . Powerpoint Presentation; Shuttleworth, Martyn. Descriptive Research Design , September 26, 2008. Explorable.com website.

Experimental Design

A blueprint of the procedure that enables the researcher to maintain control over all factors that may affect the result of an experiment. In doing this, the researcher attempts to determine or predict what may occur. Experimental research is often used where there is time priority in a causal relationship (cause precedes effect), there is consistency in a causal relationship (a cause will always lead to the same effect), and the magnitude of the correlation is great. The classic experimental design specifies an experimental group and a control group. The independent variable is administered to the experimental group and not to the control group, and both groups are measured on the same dependent variable. Subsequent experimental designs have used more groups and more measurements over longer periods. True experiments must have control, randomization, and manipulation.

  • Experimental research allows the researcher to control the situation. In so doing, it allows researchers to answer the question, “What causes something to occur?”
  • Permits the researcher to identify cause and effect relationships between variables and to distinguish placebo effects from treatment effects.
  • Experimental research designs support the ability to limit alternative explanations and to infer direct causal relationships in the study.
  • Approach provides the highest level of evidence for single studies.
  • The design is artificial, and results may not generalize well to the real world.
  • The artificial settings of experiments may alter the behaviors or responses of participants.
  • Experimental designs can be costly if special equipment or facilities are needed.
  • Some research problems cannot be studied using an experiment because of ethical or technical reasons.
  • Difficult to apply ethnographic and other qualitative methods to experimentally designed studies.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 7, Flexible Methods: Experimental Research. 2nd ed. New York: Columbia University Press, 1999; Chapter 2: Research Design, Experimental Designs . School of Psychology, University of New England, 2000; Chow, Siu L. "Experimental Design." In Encyclopedia of Research Design . Neil J. Salkind, editor. (Thousand Oaks, CA: Sage, 2010), pp. 448-453; "Experimental Design." In Social Research Methods . Nicholas Walliman, editor. (London, England: Sage, 2006), pp, 101-110; Experimental Research . Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Kirk, Roger E. Experimental Design: Procedures for the Behavioral Sciences . 4th edition. Thousand Oaks, CA: Sage, 2013; Trochim, William M.K. Experimental Design . Research Methods Knowledge Base. 2006; Rasool, Shafqat. Experimental Research . Slideshare presentation.

Exploratory Design

An exploratory design is conducted about a research problem when there are few or no earlier studies to refer to or rely upon to predict an outcome . The focus is on gaining insights and familiarity for later investigation or undertaken when research problems are in a preliminary stage of investigation. Exploratory designs are often used to establish an understanding of how best to proceed in studying an issue or what methodology would effectively apply to gathering information about the issue.

The goals of exploratory research are intended to produce the following possible insights:

  • Familiarity with basic details, settings, and concerns.
  • Well grounded picture of the situation being developed.
  • Generation of new ideas and assumptions.
  • Development of tentative theories or hypotheses.
  • Determination about whether a study is feasible in the future.
  • Issues get refined for more systematic investigation and formulation of new research questions.
  • Direction for future research and techniques get developed.
  • Design is a useful approach for gaining background information on a particular topic.
  • Exploratory research is flexible and can address research questions of all types (what, why, how).
  • Provides an opportunity to define new terms and clarify existing concepts.
  • Exploratory research is often used to generate formal hypotheses and develop more precise research problems.
  • In the policy arena or applied to practice, exploratory studies help establish research priorities and where resources should be allocated.
  • Exploratory research generally utilizes small sample sizes and, thus, findings are typically not generalizable to the population at large.
  • The exploratory nature of the research inhibits an ability to make definitive conclusions about the findings. They provide insight but not definitive conclusions.
  • The research process underpinning exploratory studies is flexible but often unstructured, leading to only tentative results that have limited value to decision-makers.
  • Design lacks rigorous standards applied to methods of data gathering and analysis because one of the areas for exploration could be to determine what method or methodologies could best fit the research problem.

Cuthill, Michael. “Exploratory Research: Citizen Participation, Local Government, and Sustainable Development in Australia.” Sustainable Development 10 (2002): 79-89; Streb, Christoph K. "Exploratory Case Study." In Encyclopedia of Case Study Research . Albert J. Mills, Gabrielle Durepos and Eiden Wiebe, editors. (Thousand Oaks, CA: Sage, 2010), pp. 372-374; Taylor, P. J., G. Catalano, and D.R.F. Walker. “Exploratory Analysis of the World City Network.” Urban Studies 39 (December 2002): 2377-2394; Exploratory Research . Wikipedia.

Historical Design

The purpose of a historical research design is to collect, verify, and synthesize evidence from the past to establish facts that defend or refute a hypothesis. It uses secondary sources and a variety of primary documentary evidence, such as, diaries, official records, reports, archives, and non-textual information [maps, pictures, audio and visual recordings]. The limitation is that the sources must be both authentic and valid.

  • The historical research design is unobtrusive; the act of research does not affect the results of the study.
  • The historical approach is well suited for trend analysis.
  • Historical records can add important contextual background required to more fully understand and interpret a research problem.
  • There is often no possibility of researcher-subject interaction that could affect the findings.
  • Historical sources can be used over and over to study different research problems or to replicate a previous study.
  • The ability to fulfill the aims of your research are directly related to the amount and quality of documentation available to understand the research problem.
  • Since historical research relies on data from the past, there is no way to manipulate it to control for contemporary contexts.
  • Interpreting historical sources can be very time consuming.
  • The sources of historical materials must be archived consistently to ensure access. This may especially challenging for digital or online-only sources.
  • Original authors bring their own perspectives and biases to the interpretation of past events and these biases are more difficult to ascertain in historical resources.
  • Due to the lack of control over external variables, historical research is very weak with regard to the demands of internal validity.
  • It is rare that the entirety of historical documentation needed to fully address a research problem is available for interpretation, therefore, gaps need to be acknowledged.

Howell, Martha C. and Walter Prevenier. From Reliable Sources: An Introduction to Historical Methods . Ithaca, NY: Cornell University Press, 2001; Lundy, Karen Saucier. "Historical Research." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor. (Thousand Oaks, CA: Sage, 2008), pp. 396-400; Marius, Richard. and Melvin E. Page. A Short Guide to Writing about History . 9th edition. Boston, MA: Pearson, 2015; Savitt, Ronald. “Historical Research in Marketing.” Journal of Marketing 44 (Autumn, 1980): 52-58;  Gall, Meredith. Educational Research: An Introduction . Chapter 16, Historical Research. 8th ed. Boston, MA: Pearson/Allyn and Bacon, 2007.

Longitudinal Design

A longitudinal study follows the same sample over time and makes repeated observations. For example, with longitudinal surveys, the same group of people is interviewed at regular intervals, enabling researchers to track changes over time and to relate them to variables that might explain why the changes occur. Longitudinal research designs describe patterns of change and help establish the direction and magnitude of causal relationships. Measurements are taken on each variable over two or more distinct time periods. This allows the researcher to measure change in variables over time. It is a type of observational study sometimes referred to as a panel study.

  • Longitudinal data facilitate the analysis of the duration of a particular phenomenon.
  • Enables survey researchers to get close to the kinds of causal explanations usually attainable only with experiments.
  • The design permits the measurement of differences or change in a variable from one period to another [i.e., the description of patterns of change over time].
  • Longitudinal studies facilitate the prediction of future outcomes based upon earlier factors.
  • The data collection method may change over time.
  • Maintaining the integrity of the original sample can be difficult over an extended period of time.
  • It can be difficult to show more than one variable at a time.
  • This design often needs qualitative research data to explain fluctuations in the results.
  • A longitudinal research design assumes present trends will continue unchanged.
  • It can take a long period of time to gather results.
  • There is a need to have a large sample size and accurate sampling to reach representativness.

Anastas, Jeane W. Research Design for Social Work and the Human Services . Chapter 6, Flexible Methods: Relational and Longitudinal Research. 2nd ed. New York: Columbia University Press, 1999; Forgues, Bernard, and Isabelle Vandangeon-Derumez. "Longitudinal Analyses." In Doing Management Research . Raymond-Alain Thiétart and Samantha Wauchope, editors. (London, England: Sage, 2001), pp. 332-351; Kalaian, Sema A. and Rafa M. Kasim. "Longitudinal Studies." In Encyclopedia of Survey Research Methods . Paul J. Lavrakas, ed. (Thousand Oaks, CA: Sage, 2008), pp. 440-441; Menard, Scott, editor. Longitudinal Research . Thousand Oaks, CA: Sage, 2002; Ployhart, Robert E. and Robert J. Vandenberg. "Longitudinal Research: The Theory, Design, and Analysis of Change.” Journal of Management 36 (January 2010): 94-120; Longitudinal Study . Wikipedia.

Mixed-Method Design

  • Narrative and non-textual information can add meaning to numeric data, while numeric data can add precision to narrative and non-textual information.
  • Can utilize existing data while at the same time generating and testing a grounded theory approach to describe and explain the phenomenon under study.
  • A broader, more complex research problem can be investigated because the researcher is not constrained by using only one method.
  • The strengths of one method can be used to overcome the inherent weaknesses of another method.
  • Can provide stronger, more robust evidence to support a conclusion or set of recommendations.
  • May generate new knowledge new insights or uncover hidden insights, patterns, or relationships that a single methodological approach might not reveal.
  • Produces more complete knowledge and understanding of the research problem that can be used to increase the generalizability of findings applied to theory or practice.
  • A researcher must be proficient in understanding how to apply multiple methods to investigating a research problem as well as be proficient in optimizing how to design a study that coherently melds them together.
  • Can increase the likelihood of conflicting results or ambiguous findings that inhibit drawing a valid conclusion or setting forth a recommended course of action [e.g., sample interview responses do not support existing statistical data].
  • Because the research design can be very complex, reporting the findings requires a well-organized narrative, clear writing style, and precise word choice.
  • Design invites collaboration among experts. However, merging different investigative approaches and writing styles requires more attention to the overall research process than studies conducted using only one methodological paradigm.
  • Concurrent merging of quantitative and qualitative research requires greater attention to having adequate sample sizes, using comparable samples, and applying a consistent unit of analysis. For sequential designs where one phase of qualitative research builds on the quantitative phase or vice versa, decisions about what results from the first phase to use in the next phase, the choice of samples and estimating reasonable sample sizes for both phases, and the interpretation of results from both phases can be difficult.
  • Due to multiple forms of data being collected and analyzed, this design requires extensive time and resources to carry out the multiple steps involved in data gathering and interpretation.

Burch, Patricia and Carolyn J. Heinrich. Mixed Methods for Policy Research and Program Evaluation . Thousand Oaks, CA: Sage, 2016; Creswell, John w. et al. Best Practices for Mixed Methods Research in the Health Sciences . Bethesda, MD: Office of Behavioral and Social Sciences Research, National Institutes of Health, 2010Creswell, John W. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches . 4th edition. Thousand Oaks, CA: Sage Publications, 2014; Domínguez, Silvia, editor. Mixed Methods Social Networks Research . Cambridge, UK: Cambridge University Press, 2014; Hesse-Biber, Sharlene Nagy. Mixed Methods Research: Merging Theory with Practice . New York: Guilford Press, 2010; Niglas, Katrin. “How the Novice Researcher Can Make Sense of Mixed Methods Designs.” International Journal of Multiple Research Approaches 3 (2009): 34-46; Onwuegbuzie, Anthony J. and Nancy L. Leech. “Linking Research Questions to Mixed Methods Data Analysis Procedures.” The Qualitative Report 11 (September 2006): 474-498; Tashakorri, Abbas and John W. Creswell. “The New Era of Mixed Methods.” Journal of Mixed Methods Research 1 (January 2007): 3-7; Zhanga, Wanqing. “Mixed Methods Application in Health Intervention Research: A Multiple Case Study.” International Journal of Multiple Research Approaches 8 (2014): 24-35 .

Observational Design

This type of research design draws a conclusion by comparing subjects against a control group, in cases where the researcher has no control over the experiment. There are two general types of observational designs. In direct observations, people know that you are watching them. Unobtrusive measures involve any method for studying behavior where individuals do not know they are being observed. An observational study allows a useful insight into a phenomenon and avoids the ethical and practical difficulties of setting up a large and cumbersome research project.

  • Observational studies are usually flexible and do not necessarily need to be structured around a hypothesis about what you expect to observe [data is emergent rather than pre-existing].
  • The researcher is able to collect in-depth information about a particular behavior.
  • Can reveal interrelationships among multifaceted dimensions of group interactions.
  • You can generalize your results to real life situations.
  • Observational research is useful for discovering what variables may be important before applying other methods like experiments.
  • Observation research designs account for the complexity of group behaviors.
  • Reliability of data is low because seeing behaviors occur over and over again may be a time consuming task and are difficult to replicate.
  • In observational research, findings may only reflect a unique sample population and, thus, cannot be generalized to other groups.
  • There can be problems with bias as the researcher may only "see what they want to see."
  • There is no possibility to determine "cause and effect" relationships since nothing is manipulated.
  • Sources or subjects may not all be equally credible.
  • Any group that is knowingly studied is altered to some degree by the presence of the researcher, therefore, potentially skewing any data collected.

Atkinson, Paul and Martyn Hammersley. “Ethnography and Participant Observation.” In Handbook of Qualitative Research . Norman K. Denzin and Yvonna S. Lincoln, eds. (Thousand Oaks, CA: Sage, 1994), pp. 248-261; Observational Research . Research Methods by Dummies. Department of Psychology. California State University, Fresno, 2006; Patton Michael Quinn. Qualitiative Research and Evaluation Methods . Chapter 6, Fieldwork Strategies and Observational Methods. 3rd ed. Thousand Oaks, CA: Sage, 2002; Payne, Geoff and Judy Payne. "Observation." In Key Concepts in Social Research . The SAGE Key Concepts series. (London, England: Sage, 2004), pp. 158-162; Rosenbaum, Paul R. Design of Observational Studies . New York: Springer, 2010;Williams, J. Patrick. "Nonparticipant Observation." In The Sage Encyclopedia of Qualitative Research Methods . Lisa M. Given, editor.(Thousand Oaks, CA: Sage, 2008), pp. 562-563.

  • << Previous: Writing a Research Proposal
  • Next: Design Flaws to Avoid >>
  • Last Updated: Sep 8, 2023 12:19 PM
  • URL: https://guides.library.txstate.edu/socialscienceresearch

Destination Area 2.0 grants awarded to five new transdisciplinary projects

  • Melody Warnick

15 Aug 2024

  • Share on Facebook
  • Share on Twitter
  • Copy address link to clipboard

Abstract scene of a Hokie stone building with summer leaves in the foreground

The Office of the Executive Vice President and Provost has awarded a new round of Phase I Planning and Development Destination Area 2.0 grants to transdisciplinary research teams working in focus areas where Virginia Tech is well positioned to have a heightened impact. 

“Destination Areas and our commitment to supporting innovative faculty research are built around the strength of transdisciplinary collaboration at Virginia Tech and the opportunity to create solutions to complex global problems," said Executive Vice Provost Don Taylor. "I congratulate these teams of faculty working across departments and disciplines for their partnership in elevating and advancing our research enterprise and for their leadership in our quest for global distinction.”

Grant awardees include the following projects: 

Ecological and Biocultural Restoration

Efforts to address the interrelated challenges of climate change, mass extinction, and declining human wellbeing must include restoration of degraded ecosystems. Virginia Tech’s Ecological and Biocultural Restoration project aims to make Virginia Tech an international destination for transdisciplinary approaches to research and training in restoring the world’s lands and waters through a research incubator, an interdisciplinary graduate program, and an expanded network of restoration scholars, students, and practitioners, all of which center the values of Indigenous people and local communities in just and equitable ways.

  • Principal investigator: J. Leighton Reid, assistant professor in the School of Plant and Environmental Sciences
  • Team members: Shannon Bell, Department of Sociology; Sally Entrekin, Department of Entomology; Carrie Fearer, Department of Forest Resources and Environmental Conservation; W. Cully Hession, Department of Biological Systems Engineering; Lisa M. Kennedy, Department of Geography; Rachel Reid, Department of Geosciences; Haldre Rogers, Department of Fish and Wildlife Conservation; Stella Schons, Department of Forest Resources and Environmental Conservation; Jessica Taylor, Department of History; Tess Wynn Thompson, Department of Biological Systems Engineering; Jeffrey Walters, Department of Biological Sciences

Learning Landscape Laboratory

Over the next 20 years, climate change will exacerbate periodic flooding and excessive stormwater runoff on Virginia Tech’s campus. The Learning Landscape Laboratory project proposes to plan and implement innovative green infrastructure systems that can also serve as sites for outdoor classrooms and student-centered research laboratories.

  • Principal investigator: Jenn Engelke, assistant professor of landscape architecture
  • Team members: Natasha Bell, Department of Biological Systems Engineering; W. Cully Hession, Department of Biological Systems Engineering; Tess Wynn Thompson, Department of Biological Systems Engineering; Matt Powers, School of Design; Megan Rippy, Department of Civil and Environmental Engineering; Rajesh Bagchi, Pamplin College of Business; Melanie Kiechle, Department of History; Jack Rosenberger, campus landscape architect; Scott Douglas, Hahn Horticulture Garden director; and Katelyn Muldoon, MS4 administrator

Rural Environments

As global population shifts toward urban centers, rural residents must grapple with complex health, economic, and education disparities. The Rural Environments Destination Area project will capitalize on existing collaborations among affiliates of the Global Change Center, the Center for Rural Education, and the Center for Public Health Practice and Research to identify innovative intervention strategies in environmental health and education research to support rural residents in Central Appalachia.

  • Principal investigators: Julia Gohlke, associate professor of environmental health; Peter Vikesland, Pryor Professor of Engineering in the Department of Civil and Environmental Engineering; and Amy Price Azano, professor of education
  • Team members: Ryan Calder, Department of Population Health Sciences; Willandia Chaves, Department of Fish and Wildlife Conservation; Alasdair Cohen, Department of Population Health Sciences; William Hopkins, Department of Fish and Wildlife Conservation; Korine Kolivras, Department of Geography; Leigh-Anne Krometis, Department of Biological Systems Engineering; Steven Poelzing, Fralin Biomedical Research Institute at Virginia Tech Carilion School of Medicine; Amy Pruden, Department of Civil and Environmental Engineering; Scott Tate, Virginia Tech Center for Economic and Community Engagement; Sophie Wenzel, Department of Population Health Sciences

Whole Health Research

With an existing transdisciplinary Whole Health Consortium and robust partnerships with health care systems and community organizations, Virginia Tech can lead a national paradigm shift toward a whole-health approach to well-being. Through a comprehensive framework that addresses health across all levels – from molecular to societal – and prioritizes a proactive model of disease prevention and well-being of individuals and communities, the Whole Health Research project will offer scientific evidence for national health care reform and contribute to the global dialogue on well-being.

  • Principal investigator: J. Tina Savla, professor of human development and family science
  • Team members: Alexandra G. DiFeliceantonio, Fralin Biomedical Research Institute at VTC and Department of Human Nutrition, Foods, and Exercise; Matthew C. Fullen, School of Education; Julie M. Gerdes, Department of English; Kathy W. Hosig, Department of Population Health Sciences; Aubrey L. Knight, Department of Family and Community Medicine, Virginia Tech Carilion School of Medicine; Quinton Nottingham, Department of Business Information Technology; Elif Tural, School of Design

Materials in Medicine

Even in 2024, many of the materials used in medicine were never specifically designed for medical applications. The Materials in Medicine project aims to revolutionize the design and synthesis of medical materials through a transdisciplinary approach to producing effective biomedical materials, from implantable tissue-mimicking materials to nanoscale drug delivery vehicles.

  • Principal investigators: Michael Schulz, associate professor in the Department of Chemistry, and John Matson, professor in the Department of Chemistry and Dr. AC Lilly Jr. Faculty Fellow in Nanoscience
  • Team members: Irving Coy Allen, Department of Biomedical Sciences and Pathobiology; Christopher Arena, Department of Biomedical Engineering and Mechanics; Jordan Darden, Department of Surgery, Virginia Tech Carilion School of Medicine; Sanket Deshmukh, Department of Chemical Engineering; Kevin Edgar, Department of Sustainable Biomaterials; Elizabeth Nowak, Department of Infectious Diseases, Virginia Tech Carilion School of Medicine; Adeolu L. Olasunkanmi, Department of Surgery, Virginia Tech Carilion School of Medicine; A. David Salzberg, Department of Surgery, Virginia Tech Carilion School of Medicine; Michelle Theus, Department of Biomedical Sciences and Pathobiology; Rong Tong, Department of Chemical Engineering

In addition to these five new projects, two existing Destination Area 2.0 projects received additional phase 1 support:

  • Human-Systems Integration in Health Care, led by principal investigator Sarah Parker, associate professor and department chair of health systems and implementation science, Virginia Tech Carilion School of Medicine
  • Public Interest Technology Collaborative, led by principal investigator Shalini Misra, associate professor, School of Public and International Affairs

Along with support from the provost’s office and the Office of Research and Innovation, investigators will receive strategic guidance from Virginia Tech leaders with LINK + LICENSE + LAUNCH, information technology, the Graduate School, University Libraries, Undergraduate Academic Affairs, inclusion and diversity, and other divisions. As their projects progress, Destination Area 2.0 projects will be eligible to submit a proposal for a larger phase 2 grant.

"The Destination Areas are exemplars of collaborative support from institutes, colleges, departments, and other units that are working together to advance project teams," said Associate Vice Provost Catherine Amelink. "With initial funding from Virginia Tech, these programs are now positioned to explore ways to secure external, ongoing support that will allow the university to deploy our unique strengths at scale."

Dave Guerin

540-231-0871

  • Blacksburg, Va.
  • Center for Economic and Community Engagement
  • College of Architecture, Arts, and Design
  • College of Engineering
  • College of Liberal Arts and Human Sciences
  • College of Natural Resources and Environment
  • College of Science
  • Executive Vice President and Provost
  • Fralin Biomedical Research Institute at VTC
  • Inclusion and Diversity
  • LINK+LICENSE+LAUNCH
  • Landscape Architecture
  • Pamplin College of Business
  • Roanoke, Va.
  • School of Plant and Environmental Sciences
  • Transdisciplinary research
  • Undergraduate Academic Affairs
  • University Libraries
  • Virginia Tech Carilion School of Medicine
  • Virginia-Maryland College of Veterinary Medicine
  • Whole Health

Related Content

Travis Morrison speaks animatedly to someone off camera

COMMENTS

  1. What Is a Research Design

    A well-planned research design helps ensure that your methods match your research objectives and that you use the right kind of analysis for your data. You might have to write up a research design as a standalone assignment, or it might be part of a larger research proposal or other project. In either case, you should carefully consider which ...

  2. What is a Research Design? Definition, Types, Methods and Examples

    The choice of research design depends on the nature of the research and the goals of the study. A well-constructed research design is crucial because it helps ensure the validity, reliability, and generalizability of research findings, allowing researchers to draw meaningful conclusions and contribute to the body of knowledge in their field.

  3. Research Design

    The research design helps to ensure that the research is conducted in a systematic and logical manner, and that the data collected is relevant and reliable. Ideally, the research design should be developed as early as possible in the research process, before any data is collected. This allows the researcher to carefully consider the research ...

  4. What Is Research Design? 8 Types + Examples

    Experimental Research Design. Experimental research design is used to determine if there is a causal relationship between two or more variables.With this type of research design, you, as the researcher, manipulate one variable (the independent variable) while controlling others (dependent variables). Doing so allows you to observe the effect of the former on the latter and draw conclusions ...

  5. Research Design: What it is, Elements & Types

    Improved communication: A well-designed research helps ensure the results are clean and influential within the research team and external stakeholders. Efficient use of resources: reducing the risk of waste and maximizing the impact of the research, research design helps to ensure that resources are used efficiently.

  6. What is Research Design? Types, Elements and Examples

    The research design categories under this are descriptive, experimental, correlational, diagnostic, and explanatory. Data analysis involves interpretation and narrative analysis. Data analysis involves statistical analysis and hypothesis testing. The reasoning used to synthesize data is inductive.

  7. What is Research Design? Characteristics, Types, Process, & Examples

    Research design is the structure of research methods and techniques selected to conduct a study. It refines the methods suited to the subject and ensures a successful setup. Defining a research topic clarifies the type of research (experimental, survey research, correlational, semi-experimental, review) and its sub-type (experimental design ...

  8. Research Design

    A well-planned research design helps ensure that your methods match your research aims and that you use the right kind of analysis for your data. You might have to write up a research design as a standalone assignment, or it might be part of a larger research proposal or other project. In either case, you should carefully consider which methods ...

  9. What is Research Design?

    Attention to robust research design helps the project run smoothly and efficiently by reducing both errors and unnecessary busywork. Good research design possesses these specific characteristics: Neutrality: Stick to only the facts throughout, creating a plan based on relevant research methods and analysis. Use it as an opportunity to identify ...

  10. Research design

    Research design refers to the overall strategy utilized to answer research questions. A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. [1] A strong research design yields valid answers to research questions while weak ...

  11. Research Methods Guide: Research Design & Method

    Research design is a plan to answer your research question. A research method is a strategy used to implement that plan. Research design and methods are different but closely related, because good research design ensures that the data you obtain will help you answer your research question more effectively. Which research method should I choose?

  12. Introducing Research Designs

    Good research design helps us to fill up the gaps in our knowledge. We focus on the gap that we perceive as most pressing, interesting, or pertinent. Gaining and accumulating knowledge is an arduous process, taking up time and effort. Specifically, in business and management, researchers should spend these resources effectively and efficiently.

  13. The Four Types of Research Design

    Research design involves choosing the right methodology, selecting the most appropriate data collection methods, and devising a plan (or framework) for analyzing the data. In short, a good research design helps us to structure our research. Marketers use different types of research design when conducting research.

  14. Planning Qualitative Research: Design and Decision Making for New

    Qualitative research, conducted thoughtfully, is internally consistent, rigorous, and helps us answer important questions about people and their lives (Lincoln & Guba, 1985). These fundamental epistemological foundations are key for developing the right research mindset before designing and conducting qualitative research.

  15. Why is research design important?

    A well-planned research design helps ensure that your methods match your research aims, ... Including mediators and moderators in your research helps you go beyond studying a simple relationship between two variables for a fuller picture of the real world. They are important to consider when studying complex correlational or causal relationships.

  16. Organizing Your Social Sciences Research Paper

    Research Design: Creating Robust Approaches for the Social Sciences. Thousand Oaks, CA: Sage, 2013; Kemmis, Stephen and Robin McTaggart. "Participatory Action Research." ... The research helps contextualize already known information about a research problem, thereby facilitating ways to assess the origins, scope, and scale of a problem and ...

  17. 5 Types of Research Design

    The document that contains information about the technique, methods and essential details of a project is called a research design. Experts define research design as the glue that holds the research project together. It (research design) helps provide a structure and direction to the research, yielding favourable results.

  18. PDF Research Design and Research Methods

    Research Design and Research Methods 49 your earlier observations and interviews. This approach calls for a flexible merger of data collection and analysis, since it is impossible to know when your observations will become analytic insights. The procedures associated with deduction are, necessarily, quite different. In particular, theory testing

  19. What is Research Design and Why is it Important for Businesses

    Advantages of Research Design. Provides a systematic approach: Research design in business offers a structured and systematic approach to conducting research. It helps the researchers organize their thoughts, select appropriate research methods, and develop a plan to collect and analyze data.

  20. What is a Research Design? Importance and Types

    A typical research design is a detailed methodology or a roadmap for the successful completion of any research work. ilovephd.com Importance of Research Design. A Good research design consists of the following important points: Formulating a research design helps the researcher to make correct decisions in each and every step of the study.

  21. (Pdf) the Research Design

    The design of a research topic explains the type of research (experimental, survey, correlational, semi-experimental, review) and also its sub-type (experimental design, research problem ...

  22. (PDF) Research Design

    Research design is the plan, structure and strategy and investigation concaved so as to obtain search question and control variance" (Borwankar, 1995). ... RD also helps in suggesting the ...

  23. Types of Research Designs

    The research design refers to the overall strategy that you choose to integrate the different components of the study in a coherent and logical way, thereby, ensuring you will effectively address the research problem; it constitutes the blueprint for the collection, measurement, and analysis of data. ... Causality research designs helps ...

  24. Machine learning approach helps researchers design better gene-delivery

    Machine learning approach helps researchers design better gene-delivery vehicles for gene therapy. ScienceDaily . Retrieved August 11, 2024 from www.sciencedaily.com / releases / 2024 / 08 ...

  25. Library design, amenities, and services for enhancing the reading

    This study explored user perspectives on library design elements, amenities, and services that can potentially enhance the reading experience. Data were collected through a self-administered questionnaire with 537 students. The majority of respondents (86.8%) reported enjoying reading in library environments.

  26. Research Assistant, Graphic Design & Communications

    You may be asked to help with any aspect of BKC's communications activities, including graphic design, writing and editing website and social media content, promoting events, taking photos and videos, and developing creative ways to share and amplify research, education, programs, and other activities of the Center.

  27. Journal of Medical Internet Research

    Background: Recruiting participants for clinical trials poses challenges. Major barriers to participation include psychological factors (eg, fear and mistrust) and logistical constraints (eg, transportation, cost, and scheduling). The strategic design of clinical trial messaging can help overcome these barriers. While strategic communication can be done through various channels (eg ...

  28. Types of Research Designs

    The research design refers to the overall strategy that you choose to integrate the different components of the study in a coherent and logical way, thereby, ensuring you will effectively address the research problem; it constitutes the blueprint for the collection, measurement, and analysis of data. ... Descriptive research designs help ...

  29. The Impact of Blockchain Technology Applications on Enterprise

    The follow-up of this paper includes: the second part is theoretical background, the third part is literature review and hypothesis development, the fourth part is research design, the fifth part is research results, the sixth part is further analysis, the seventh part is conclusions and recommendations, and the last part is limitations and ...

  30. Destination Area 2.0 grants awarded to five new transdisciplinary

    The Office of the Executive Vice President and Provost has awarded a new round of Phase I Planning and Development Destination Area 2.0 grants to transdisciplinary research teams working in focus areas where Virginia Tech is well positioned to have a heightened impact. "Destination Areas and our commitment to supporting innovative faculty research are built around the strength of ...