110 Video Game Topic Ideas for Essays & Examples

🔝 top 10 video game topics for 2024, 🏆 best video game topic ideas & essay examples, 🎮 good video game research topics, 🕹️ interesting gaming topics to write about, ❓ video game research questions, ✅ simple & easy video game essay topics.

Looking for video game topics for your project? Look no further! Here, we’ve collected excellent essay topics for true gaming enthusiasts. Whether you’re looking for argumentative essay ideas on video games, research topics, or questions for debate, you will find them here.

  • History of Video Game Consoles
  • Myths of Video Game Violence
  • The Global Phenomenon of Esports
  • VR Gaming and Its Future Possibilities
  • How Video Games Influence Cognitive Skills
  • Therapeutic Mental Health Benefits of Video Games
  • Diversity and Gender Representation in Video Games
  • How Multiplayer Games Impact Social Interaction
  • Healthy Gaming Habits Against Video Game Addiction
  • Aesthetic and Narrative Qualities of Artistic Video Games
  • Twitch.tv and Video Game Streaming Career From this point, in spite of the fact that the Twitch.tv platform can be viewed as belonging to the live-streaming industry, the careers of streamers develop according to the traditional principles of the entertainment business.
  • Product Life Cycle & Marketing of Video Game Industry One of the most important advantages of the concept of life cycle can be seen in the sphere of marketing, where if used as a tool it allows adjusting the strategies, including marketing, based on […]
  • Sony and Nintendo in the Video Game Industry The firm has manufactured several generations of the home console since the 1980s, beginning with the Nintendo Entertainment System, the Super Nintendo Entertainment System released in the early 1990s, and the Nintendo 64 that was […]
  • A Video Game Store’s Business Plan The projected cash flow of the cash in the balance sheet will appear positive for the next five years and will show that the company’s profitability in will be good enough pay for operating expenses […]
  • Video Game Industry Analysis In 1950, Yamauchi assumed the position of the president in the firm and got on a variety of strategies with the purpose of rationalizing and modernizing the way the firm was controlled.
  • Video Game Effects: Good or Bad? Given the fact that there is indeed a logically sound rationale to such a suggestion, throughout the course of conducting my study, I remained thoroughly observant of the article’s classification-related suggestions, in regards to the […]
  • The Video Game Industry Evolution The first mention of the creation of such games dates back to the 1940s, but it was in 1952 that Alexander Shafto “Sandy” Douglas officially presented his dissertation at the University of Cambridge. One of […]
  • The Monopoly Tycoon Video Game Review The game is stylistically similar to the board game Monopoly, and it can be played both online and offline. It is important to note that the game has a multiplayer feature, which can be played […]
  • The “Medal of Honor” Video Game Analysis The game is set to depict the Afghanistan invention in 2002 and the battle between the U.S.military and the Taliban. Due to the close resemblance of the game to the Afghanistan war, the game has […]
  • The NASCAR Video Game Project Management Plan The plan attempts to draw the features and gameplay mechanics by replicating the thought process of a potential player. At this stage, the game should be well-advertised and ready for release.
  • The Motivation of the Video Game Player For instance, the project gave its players the dynamic and fast pace of the game, a vast and detailed map, various locations, several different weapons, and character skins, and this is not all the possibilities.
  • Human Life: Video Game, Simulation, or Reality? Drawing parallels between the real and the virtual world, one can admit the unreality of the existence of the planet and people and compare everything that happens with the simulation in which we are.
  • Does Video Game Violence Lead to Aggression in Children? Among the gaming community, children participate vigorously in absorbing the plethora of entertaining content, including age-restricted ones where the scenes of violence are abundant.
  • A Role-Playing Video Game Ayiti: The Cost of Life This strategy worked but not to the topmost level simply because the burden of the living cost was gradually weighing down the overall income of my family.
  • BioWare Video Game Project Management For example, Dragon Age: Inquisition, the third installment of the company’s flagship series, switched to the Frostbite engine used by most of the EA games and succeeded in delivering the product despite the technical difficulties […]
  • Video Game History: Overview From the 1990s to Nowadays In addition to arcade car behavior, the game was also famous for its beautiful graphics at the time, with each game in the series being a launch title showing the capabilities of the console.
  • FIFA 10 Football Simulation Video Game A lack of consistency is evident in the various versions of this game as FIFA 10 played on a PC lacks the realism that is exhibited when the game is played on XBOX 360 and […]
  • Video Game Delivery Project: Strategic Marketing To initiate strategies in marketing of Video Game, the company will decide to develop a web based application by ABC CORP and this application is customized to meet the requirements of the project. The purpose […]
  • The U.S. Video Game Industry This was also based on the views of the company’s developers who assumed that the technological advantages of the the16-bit system were extremely less than that of the 8-bit system.
  • Video Game Company Against Online Piracy The purpose of the said DRM software is to protect the intellectual rights of the company. The fourth major issue is the encompassing goal of the VGC to end all types of piracy.
  • Video Game Addiction and Maslow’s Hierarchy of Needs As to me, I was interested in video games when I was a child because this industry was at its beginning and almost every pupil was involved in it.
  • Nintendo in the Video Game Industry Previously, Atari was a major power to reckon with in the industry but was later toppled by Nintendo. Part of Yamauchi’s vision was to introduce new and cheaper video games in the market than the […]
  • Game designers have the responsibility to design less video game Secondly, the outcome of the video game is unpredictable as compared to movie in which the audience can predict the point at which the story would end thus making the video games more interesting to […]
  • Striving for the Ultimate Knowledge: Eli’s Mission. Video Game Owing to the peculiarities of the movie plot, the game can be shaped in a most intriguing way, with a lot of turns of the plot which lead to the most effective denouement.
  • Analysis of the Counter-Strike Video Game Phenomenon in Computer Gaming
  • Comparison of Three Companies in Video Game Industry; Nintendo, Sony and Microsoft
  • Analysis of Free Will in The Stanley Parable Video Game
  • Analysis of the Effects of Playing a Video Game Used in Computer Science
  • Analysis of the Characteristics and Player Statistics of Bungie’s Video Game Destiny
  • Are Video Games Truly a Game or a Reality?
  • Analysis of the Topic of the Releases in the Video-Game Industry and the Issues of the Violence
  • Analysis of the Rise of the Video Game Empire in Modern Society
  • Two Aspects of Creating a Video Game
  • Analysis of the Third-Person, Console-Based Video Game, The Last of Us
  • Are Users The Next Entrepreneurs? A Case Study On The Video Game Industry
  • Combating Video Game Addiction : A Global Problem
  • Does Playing Video Game Consoles Bring About Plenty of Advantages?
  • Analysis of the Field Work Project and the Topic of a Video Game Community
  • Does Video Game Violence Affect Children?
  • Do Video Games Contribute For Video Game Violence?
  • Is The Video Game Industry an Oligopoly?
  • Is Video Game Violence the Cause of Juvenile Delinquency?
  • Psychological Effects of Video Game Violence on Children
  • What Is the Defining Business and Economic Characteristics of the Video Game Console Industry?
  • Why Play Station 4 and the Xbox One Are the Kings of the Next Generation Video Game Console?
  • What Makes A Video Game Addictive?
  • Competition Among 3 Main Video Game Companies: Nintendo, Sega, And Sony
  • Brief Note On Video Gaming And The Video Game Industry
  • Effects of Television and Video Game Violence on Children and Teenagers
  • Analysis of the Different Genres of Video Game Systems for Children
  • Overview of the Process and Career in Video Game Design
  • Development of the Elder Scrolls Video Game Series
  • Breaking Gender Stereotypes in Traditionally Masculine Sports: The Inclusion of Women in FIFA 16 Video Game
  • Cancer: Video Game and Playing Violent Video
  • Fighting the Online Video Game Wars in China
  • Government Regulation Of Video Game Violence Is Unconstitutional And Unnecessary
  • Japanese video game industry
  • History of the Video Game Industry
  • Microsoft Xbox Entering the World of Video Game
  • The Merchant of Video Games: Adapting the Merchant of Venice into an Adventure Game
  • What Are Some Revolutionary Breakthroughs in the Video Game Industry?
  • What Does It Take To Make It in the Video Games Industry?
  • Why Has the Video Game Industry Exploded Recently?
  • What Is Wrong With the Video Game Industry in This Generation?
  • Is the Video Game Industry Going Downhill?
  • Who Is the Best Voice Actor in the Video Game Industry?
  • What Will Be the Next Breakthrough or “Big Thing” in the Video Game Industry?
  • Is the Video Game Industry in Trouble Right Now?
  • Who Makes More Money: Hollywood or the Video Game Industry?
  • How Has the Coronavirus Impacted the Video Game Industry?
  • What Is the Biggest Missed Opportunity Yet in the Video Game Industry?
  • Does Video Game Violence Induce Negative Affects on Our Youth?
  • What Are the Changes the Video Game Industry Needs?
  • How Large Is the Video Game Industry?
  • Why Is the Video Game Industry in China Dominated by MMOs?
  • Is There a Bubble Forming in the Video Game Industry?
  • What Do Video Game Players Understand That Most People Don’t?
  • How Easy Is It to Make a Video Game?
  • What’s the Best Advice You’ve Received From a Video Game?
  • What Was the First Video Game?
  • What Is the Most Inappropriate Video Game You Know?
  • What Are the Elements of a Good Video Game?
  • How Much Does It Cost to Develop a Video Game?
  • What Can Video Game Consoles Offer You?
  • Why Video Game Addiction Is One of the Urgent Problems Today?
  • How Does Science Create Video Game?
  • How the 1970s Sparked the Video Game Industry?
  • Why Do Video Game Movies Always Fail?
  • What’s the Most Popular Video Game Genre?
  • The Science Behind Brain-Boosting Games
  • How Gaming Reflects and Influences Society
  • How Video Games Participate in Social Justice
  • Pros and Cons of Gamified Fitness and Wellness Apps
  • Gamification, Its Benefits, and Learning Outcomes
  • Virtual Goods in Video Games and Their Real-World Value
  • What Factors Influence Immersion and Player Engagement?
  • Cloud Gaming and the Potential of Streaming Technology
  • Market Trends and Revenue Models of the Video Game Industry
  • Violence, Microtransactions, and Other Ethical Issues in Video Game Development
  • Problem Solving Essay Ideas
  • Computers Essay Ideas
  • Technology Essay Ideas
  • Cyberspace Topics
  • Developmental Psychology Essay Ideas
  • Software Engineering Topics
  • Online Community Essay Topics
  • Hacking Essay Topics
  • Chicago (A-D)
  • Chicago (N-B)

IvyPanda. (2023, December 27). 110 Video Game Topic Ideas for Essays & Examples. https://ivypanda.com/essays/topic/video-game-essay-topics/

"110 Video Game Topic Ideas for Essays & Examples." IvyPanda , 27 Dec. 2023, ivypanda.com/essays/topic/video-game-essay-topics/.

IvyPanda . (2023) '110 Video Game Topic Ideas for Essays & Examples'. 27 December.

IvyPanda . 2023. "110 Video Game Topic Ideas for Essays & Examples." December 27, 2023. https://ivypanda.com/essays/topic/video-game-essay-topics/.

1. IvyPanda . "110 Video Game Topic Ideas for Essays & Examples." December 27, 2023. https://ivypanda.com/essays/topic/video-game-essay-topics/.

Bibliography

IvyPanda . "110 Video Game Topic Ideas for Essays & Examples." December 27, 2023. https://ivypanda.com/essays/topic/video-game-essay-topics/.

Pitchgrade

Presentations made painless

  • Get Premium

107 Video Game Essay Topic Ideas & Examples

Inside This Article

Video games have become a popular form of entertainment for people of all ages. From action-packed shooters to immersive role-playing games, there is a video game out there for everyone. With such a wide variety of games to choose from, it can be overwhelming to decide on a topic for an essay about video games. To help you get started, here are 107 video game essay topic ideas and examples to inspire your writing:

  • The impact of violent video games on children's behavior
  • The evolution of video game graphics over the years
  • The rise of esports and its influence on the gaming industry
  • The benefits of playing video games for cognitive development
  • The representation of gender and race in video games
  • The history of virtual reality gaming
  • The psychology of loot boxes in video games
  • The role of music in enhancing the gaming experience
  • The ethics of video game journalism
  • The impact of video game addiction on mental health
  • The cultural significance of video game franchises like Mario and Pokemon
  • The future of cloud gaming and streaming services
  • The role of storytelling in video games
  • The influence of video games on popular culture
  • The relationship between video games and education
  • The impact of video game censorship on creative expression
  • The portrayal of mental health issues in video games
  • The role of social media in video game marketing
  • The history of video game consoles
  • The impact of online multiplayer games on social interaction
  • The evolution of game mechanics in the survival horror genre
  • The representation of LGBTQ+ characters in video games
  • The influence of Japanese culture on video game aesthetics
  • The role of nostalgia in the popularity of retro gaming
  • The impact of microtransactions on player experience
  • The relationship between video games and violence in society
  • The role of artificial intelligence in game development
  • The impact of video game streaming platforms like Twitch
  • The representation of disability in video games
  • The influence of game design on player engagement
  • The evolution of mobile gaming
  • The role of virtual economies in online multiplayer games
  • The impact of video game sound design on immersion
  • The portrayal of mental illness in video games
  • The influence of Eastern philosophy on game narratives
  • The role of user-generated content in game communities
  • The impact of fan culture on video game development
  • The representation of indigenous cultures in video games
  • The influence of literature on game storytelling
  • The role of game difficulty in player satisfaction
  • The impact of video game piracy on the industry
  • The portrayal of war in military shooter games
  • The relationship between video games and sports
  • The influence of board games on video game design
  • The role of player choice in game narratives
  • The impact of virtual reality on therapy and rehabilitation
  • The representation of historical events in video games
  • The influence of film on game aesthetics
  • The role of gender stereotypes in video game marketing
  • The impact of game mods on player creativity
  • The portrayal of mental health professionals in video games
  • The influence of tabletop role-playing games on video game mechanics
  • The role of game mechanics in promoting teamwork and cooperation
  • The impact of game development crunch on industry workers
  • The representation of animals in video games
  • The influence of science fiction on game narratives
  • The role of player agency in game storytelling
  • The impact of game difficulty on player motivation
  • The portrayal of addiction in video games
  • The influence of mythology on game aesthetics
  • The role of puzzles in game design
  • The impact of game reviews on player purchasing decisions
  • The representation of mental illness in horror games
  • The influence of architecture on game environments
  • The role of game soundtracks in enhancing the player experience
  • The impact of game tutorials on player learning
  • The portrayal of robots and AI in video games
  • The influence of fashion on character design in games
  • The role of humor in game narratives
  • The impact of game localization on cultural representation
  • The representation of environmental issues in video games
  • The influence of psychology on game design
  • The role of game narratives in exploring complex themes
  • The impact of game communities on player engagement
  • The portrayal of mental health struggles in indie games
  • The influence of mythology on game storytelling
  • The role of player feedback in game development
  • The impact of game accessibility on player inclusivity
  • The representation of gender identity in video games
  • The influence of surrealism on game aesthetics
  • The role of morality systems in game narratives
  • The impact of game tutorials on player retention
  • The portrayal of mental health professionals in horror games
  • The influence of psychology on game narratives
  • The role of player choice in shaping game outcomes
  • The impact of game aesthetics on player immersion
  • The representation of LGBTQ+ relationships in video games
  • The role of environmental storytelling in game design
  • The impact of game streaming on player engagement
  • The portrayal of mental illness in puzzle games
  • The role of player feedback in shaping game development
  • The impact of game aesthetics on player perception
  • The representation of LGBTQ+ characters in horror games
  • The influence of film noir on game narratives
  • The role of environmental storytelling in shaping game worlds
  • The impact of game tutorials on player skill progression
  • The portrayal of mental illness in narrative-driven games
  • The influence of science fiction on game aesthetics
  • The role of player choice in determining game endings
  • The impact of game aesthetics on player emotional response
  • The representation of LGBTQ+ relationships in indie games
  • The influence of literature on game design
  • The role of environmental storytelling in immersive game worlds
  • The impact of game streaming on player community building
  • The portrayal of mental health struggles in interactive fiction games

Whether you are writing a research paper, a critical analysis, or a personal reflection on video games, these topics provide a diverse range of ideas to explore. From examining the psychological effects of gaming to analyzing the cultural significance of game narratives, there is no shortage of fascinating topics to delve into. So, pick a topic that interests you and start exploring the world of video games through the lens of your essay. Happy writing!

Want to research companies faster?

Instantly access industry insights

Let PitchGrade do this for me

Leverage powerful AI research capabilities

We will create your text and designs for you. Sit back and relax while we do the work.

Explore More Content

  • Privacy Policy
  • Terms of Service

© 2024 Pitchgrade

ICGA Journal

The journal of the computer games community, impact factor, latest issue, back volumes, issn online, aims & scope, editorial board, author guidelines, abstracted/indexed in, open access, peer review.

The ICGA Journal provides an international forum for computer games researchers presenting new results on ongoing work. The editors invite contributors to submit papers on all aspects of research related to computers and games. Relevant topics include, but are not limited to:   (1) the current state of game-playing programs for board games, card games, and puzzles, (2) the current state of virtual, casual, and video games, (3) new theoretical developments in game-related research, (4) theoretical and practical work on the design of games and puzzles, and (5) general scientific contributions produced by the study of games.   Also welcome is research on topics such as: (6) social aspects of computer games, (7) cognitive research of how humans play games, (8) capture and analysis of game data, and (9) issues related to networked games are invited to submit their contributions.

Editor-in-Chief

Prof. M. Winands Department of Advanced Computing Sciences, Maastricht University Maastricht, The Netherlands Email: [email protected]

Co-Editors-in-Chief

Prof. I.-C. Wu Department of Computer Science, National Yang Ming Chiao Tung University Taiwan Email: [email protected]

Prof. T. Cazenave Université Paris-Dauphine, PSL Research University France Email: [email protected]

Honorary Editor

Prof. dr. H.J. van den Herik Mathematical Institute Leiden University The Netherlands Email: [email protected]

Editor for ICGA affairs

Dr. W. Kosters Department of Computer Science (LIACS) Leiden University The Netherlands Email: [email protected]

Dr. Cameron Browne Maastricht University The Netherlands

Dr. Aviezri S. Fraenkel Weizmann Institute of Science Israel

Dr. Michael Hartisch University of Siegen Germany

Prof. Dr. Tsan-Sheng Hsu Institute of Information Science, Academia Sinica Taiwan

Dr. Chu-Hsuan Hsueh Japan Advanced Institute of Science and Technology Japan

Prof. Dr. Hiroyuki Iida Japan Advanced Institute of Science and Technology Japan

Dr. Akihiro Kishimoto IBM Research Japan

Dr. Éric Piette UCLouvain Belgium

Prof. Dr. Jonathan Schaeffer University of Alberta Canada

Dr. Matthew Stephenson Flinders University Australia

Dr. Yoshimasa Tsuruoka University of Tokyo Japan

Submission of manuscripts

By submitting my article to this journal, I agree to the  Author Copyright Agreement , the  IOS Press Ethics Policy , and the  IOS Press Privacy Policy .

Authors are requested to submit their manuscript electronically to the online submission system:  https://mc.manuscriptcentral.com/icga . Note that the manuscript should be uploaded as one file with tables and figures included.

Required files After the article has been accepted, the following electronic files are required: a word processor file of the text, such as Word or LateX. If using LaTeX, please use the style file available at: https://vtex-soft.github.io/texsupport.iospress-icg/ . Also send a pdf version of the LaTeX file as well as separate files of all figures (if any); see "Preparation of Manuscripts" for the required file formats.

Peer Review Process and Process for Appeals The ICGA Journal operates a rigorous, timely, blinded peer review process (with an option for double-blind if requested) by experts in the field. Manuscripts submitted to the ICGA Journal will be assessed for suitability for publication in the journal by the Editor-in-Chief. Manuscripts that are deemed unsuitable may be rejected without peer review by the Editor-in-Chief and/or the Associate Editors, and the author will be informed as soon as possible. Manuscripts that are deemed suitable for peer review are forwarded to an Associate Editor with expertise in that area who then recruits appropriate anonymous referees (a minimum of two) for confidential review. Referee reports are then assessed by the Associate Editor, who makes a decision which is then subject to approval of the Editors-in-Chief. Once approved this decision is then conveyed to the author along with the referee’s anonymized reports. The initial decision will be one of the following: rejection, acceptance without revision, or potentially acceptable after minor or major revisions. Revised manuscripts will be appraised by the Associate Editor, who may seek the opinion of referees (prior or new) before making a decision, which again is subject to approval of the Editor-in-Chief. Once approved, this decision is then conveyed to the author along with the anonymized referee’s reports. Once accepted, manuscripts are normally published on-line without delay and appear in the next available print issue (published quarterly). The Editor-in-Chief has ultimate responsibility for what is published in the journal. Authors may appeal decisions by contacting the Editor-in-Chief (at  [email protected] ). Authors will be informed in writing of the result of their appeal.

Publication Fee The ICGA Journal does not charge a publication fee.

Colour figures It is possible to have figures printed in colour, provided the cost of their reproduction is paid for by the author. See Preparation of Manuscripts for the required file formats.

Open Access option The IOS Press Open Library offers authors an Open Access (OA) option. By selecting the OA option, the article will be freely available from the moment it is published, also in the pre-press module. In the Open Library the article processing charges are paid in the form of an Open Access Fee. Authors will receive an Open Access Order Form upon acceptance of their article. Open Access is entirely optional. See also our website for more information about this option IOS Press Open Library

IOS Pre-press This journal publishes all its articles in the IOS Press Pre-Press module. By publishing articles ahead of print the latest research can be accessed much quicker. The pre-press articles are the corrected proof versions of the article and are published online shortly after the proof is created and author corrections implemented. Pre-press articles are fully citable by using the DOI number. As soon as the pre-press article is assigned to an issue, the final bibliographic information will be added. The pre-press version will then be replaced by the updated, final version.

PREPARATION OF MANUSCRIPTS

Organization of the paper and style of presentation Manuscripts must be written in English. Authors whose native language is not English are advised to consult a professional English language editing service or a native English speaker prior to submission.

Manuscripts should be prepared with wide margins and double spacing throughout, including the abstract, footnotes and references. Every page of the manuscript, including the title page, references, tables, etc., should be numbered. However, in the text no reference should be made to page numbers; if necessary, one may refer to sections. Try to avoid the excessive use of italics and bold face.

Manuscripts should be organized in the following order: 

  • Body of text (divided by subheadings) 
  • Acknowledgements 
  • References 
  • Figure captions 
  • Figures Headings and subheadings should be numbered and typed on a separate line, without indentation. SI units should be used, i.e., the units based on the metre, kilogramme, second, etc. 

Title page The title page should provide the following information:

  • Title (should be clear, descriptive and not too long)
  • Name(s) of author(s); please indicate who is the corresponding author
  • Full affiliation(s)
  • Present address of author(s), if different from affiliation
  • Complete address of corresponding author, including tel. no., fax no. and e-mail address
  • Abstract; should be clear, descriptive, self-explanatory and not longer than 200 words, it should also be suitable for publication in abstracting services

Author contributions IOS Press has adopted Sage’s Authorship Policy.  Please go to:   Authorship guidelines | SAGE Publications Ltd  for details.

Tables Number as Table 1, Table 2 etc, and refer to all of them in the text. All tables should be contained within the manuscript itself, and embedded in the text. Each table should have a brief and self-explanatory title. Column headings should be brief, but sufficiently explanatory. Standard abbreviations of units of measurement should be added between parentheses. Vertical lines should not be used to separate columns. Leave some extra space between the columns instead. Any explanations essential to the understanding of the table should be given in footnotes at the bottom of the table.

Figures Number figures as Fig. 1, Fig. 2, etc and refer to all of them in the text. All figures and other graphics should be contained within the manuscript itself, and embedded in the text. Colour figures can be included, provided the cost of their reproduction is paid for by the author. For the file formats of the figures please take the following into account: - line art should be have a minimum resolution of 600 dpi, save as EPS or TIFF - grayscales (incl photos) should have a minimum resolution of 300 dpi (no lettering), or 500 dpi (when there is lettering); save as tiff - do not save figures as JPEG, this format may lose information in the process - do not use figures taken from the Internet, the resolution will be too low for printing - do not use colour in your figures if they are to be printed in black & white, as this will reduce the print quality (note that in software often the default is colour, you should change the settings) - for figures that should be printed in colour, please send a CMYK encoded EPS or TIFF Figures should be designed with the format of the page of the journal in mind. They should be of such a size as to allow a reduction of 50%. On maps and other figures where a scale is needed, use bar scales rather than numerical ones, i.e., do not use scales of the type 1:10,000. This avoids problems if the figures need to be reduced. Each figure should have a self-explanatory caption. The captions to all figures should be typed on a separate sheet of the manuscript. Photographs are only acceptable if they have good contrast and intensity.

References Authors are requested to use the APA (American Psychological Association) citation style. APA in-text citations should include the author's last name followed by the year of publication. All publications cited in the text should be presented in an alphabetical list of references at the end of the manuscript. Submitted articles can be listed as (author(s), unpublished data). See their website for more information. Authors are responsible for checking the accuracy of all references. Manuscripts will not be considered if they do not conform to the APA citation guidelines.

References must be listed alphabetically in APA style: Anderson, A. K. (2005). Affective influences on the attentional dynamics supporting awareness. Journal of Experimental Psychology: General, 154, 258–281. Anderson, A. K., Christoff, K., Panitz, D., De Rosa, E., & Gabrieli, J. D. E. (2003). Neural correlates of the automatic processing of threat facial signals. Journal of Neuroscience, 23, 5627–5633. Armony, J. L., & Dolan, R. J. (2002). Modulation of spatial attention by fear-conditioned stimuli: An event-related fMRI study. Neuropsychologia, 40, 817–826. Beck, A. T., Epstein, N., Brown, G., & Steer, R. A. (1988). An inventory for measuring clinical anxiety: Psychometric properties. Journal of Consulting and Clinical Psychology, 56,893–897. Calvo, M. G., & Lang, P. J. (2004). Gaze patterns when looking at emotional pictures: Motivationally biased attention. Motivation and Emotion, 28, 221–243. Carretie, L., Hinojosa, J. A., Martin-Loeches, M., Mecado, F., & Tapia, M. (2004). Automatic attention to emotional stimuli: Neural correlates. Human Brain Mapping, 22, 290–299.  

Copyright of your article Authors submitting a manuscript do so on the understanding that they have read and agreed to the terms of the  IOS Press Author Copyright Agreement .

Article sharing IOS Press adopted Sage’s Article Sharing Policy from 8 th  of July 2024.  Please go to:   Sage’s Author Archiving and Re-Use Guidelines | SAGE Publications Ltd  for details. If your manuscript was submitted prior to 8 th  of July 2024, please contact  [email protected]  with details of your enquiry.

PROOFS AND PRE-PRESS

The corresponding author will receive a PDF proof and is asked to check this proof carefully (the publisher will execute a cursory check only). Corrections other than printer's errors, however, should be avoided. Costs arising from such corrections will be charged to the authors.

The corrected proof is published online in the journal’s pre-press module shortly after the proof is created and author corrections are implemented. This is not the final version. As soon as the article is assigned to an issue, the final bibliographic information will be added and the pre-press file will be replaced by the updated, final version. Pre-press articles are fully citable by using their DOI number.

PURCHASES How to order reprints, a PDF file, journals, or IOS Press books The corresponding author of a contribution to the journal will receive a complimentary PDF Author’s Copy of the article, unless otherwise stated. This PDF copy is watermarked and for personal use only. A free PDF copy will not be provided for conference proceedings and abstract issues. An order form for a PDF file without watermark, reprints or additional journal copies will be provided along with the PDF proof. If you wish to order reprints of an earlier published article, please contact the publisher for a quotation. IOS Press, Fax: +31 20 687 0019. Email: [email protected] .

An author is entitled to 25 % discount on IOS Press books. See Author's discount (25%) on all IOS Press book publications .

KUDOS Authors of published articles (non-prepress, final articles) will be contacted by Kudos . Kudos is a service that helps researchers maximize the impact and visibility of their research. It allows authors to enrich their articles with lay metadata, add links to related materials and promote their articles through the Kudos system to a wider public. Authors will receive no more than three emails: one invitation and a maximum of two reminders to register for the service and link the published article to their profile. Using and registering for Kudos remains entirely optional. For more information, please have a look at our authors section .

HOW TO PROMOTE YOUR WORK

Would you like some pointers on how to help your research achieve a wider reach and greater impact? Please consult our Promotional Toolkit for Authors for tips.

Please visit the   IOS Press Authors page   for further information.

Cabell's Guide or Directory Google Scholar Inspec IET Ulrich's Periodicals Web of Science: Journal Citation Reports/Science Edition Web of Science: Science Citation Index-Expanded (SciSearch®)

By default, articles published in  ICGA Journal  are available only to institutions and individuals with access rights. However, the journal offers all authors the option to purchase open access publication for their article as part of the  IOS Press Open Library . This means that the final published version will be freely available to anyone worldwide, indefinitely, under a Creative Commons license and without the need to purchase access to the article. This is also referred to as “gold” open access.

Gold open access pricing Authors who choose gold open access publication will be subject to an article publication charge of € 1500 / US$ 1500 for publication under the  CC BY-NC 4.0  license or € 2150 / US$ 2150 for publication under the  CC BY 4.0  license. Pricing is exclusive of possible taxes. After an article is accepted for publication, the corresponding author will be informed regarding the open access option during the production stages, and will have the opportunity to purchase open access for their article. It could be that the open access fee of an article is waived completely due an institutional agreement IOS Press has with the corresponding authors' institution. Please check the  institutional agreements  page for details.

Green open access Authors who do not make use of the gold open access option may still make their article freely available using self-archiving, also referred to as green open access. Authors may make their final accepted manuscript available for free download from their personal or institutional website or institutional archive. This model is free for the author.

ICGA Journal Peer Review Policy

ICGA Journal is a peer-reviewed journal. All articles submitted to the journal undergo a rigorous, timely and single blinded peer review process. This means that the identity of the authors is known with the reviewers but the identity of the reviewers is not communicated to the authors. Upon request authors may be granted a double blinded peer review process, where the identity of the authors is not communicated to the reviewers. Please visit our  reviewer guidelines  for further information about how to conduct a review.

All submitted manuscripts are subject to initial appraisal by the acting Editor-in-Chief, and, if found suitable for further consideration, to rigorous peer-review by independent, expert referees. Reasons to reject a paper in the pre-screening process could for example be because the work does not fall within the aims and scope, the writing is of poor quality, the instructions to authors were not followed or the presented work is not novel.

Papers deemed suitable to be reviewed will be assigned a handling editor. The handling editor is an Associate Editor or one of the Editors-in-Chief for the journal, with expertise on the subject matter of the paper. The handling editor will then invite reviewers to comment on the work. Decisions are based on a minimum of two referee reports. The referee reports are then assessed by the handling editor, who makes a decision which is then subject to approval of the acting Editor-in-Chief.

Reviewers are asked to judge a paper on at least:

  • Originality, novelty and significance of results
  • Technical quality of work
  • Comprehensibility and presentation of the paper
  • Overall impression

Based on the received reviews the handling editor will propose to the Editors-in-Chief a recommendation:

  • Minor revisions required
  • Major revisions required

They mean the following:

  • Accept: The manuscript is suitable for publication and only requires minor polishing; thus, no further reviews are requested.
  • Minor revisions required: The authors are required to make moderate changes to their manuscript. The manuscript becomes acceptable for publication if the changes proposed by the reviewers and editors are successfully addressed. The revised manuscript will be examined by the acting Editor-in-Chief and possibly sent back to all (or a selection of) reviewers for a second round of reviews. Authors are requested to provide a letter to the reviewers detailing the improvements made for the resubmission.
  • Major revisions required: The manuscript cannot be accepted for publication in its current form. However, a major revision which addresses all issues raised by the reviewers may be acceptable for publication. The revised manuscript will undergo a full second round of review. Authors are requested to provide a letter to the reviewers detailing the improvements made for the resubmission.
  • Reject: The manuscript is rejected as it is deemed to be out of scope, not relevant, or not meeting the journal’s quality standards in terms of significance, novelty, and/or presentation.

Once the first decision is approved by the acting Editor-in-Chief it is then conveyed to the (corresponding) author along with the referee’s anonymized reports. Revised manuscripts will be appraised again by the handling editor, who may seek the opinion of referees (prior or new) before making a decision, Authors are eventually notified of a accept or reject decision by the acting Editor-in-Chief, whose decision is final. The acting Editor-in-Chief has ultimate responsibility for what is published in the journal.

Newsletter : Be sure to sign up to the ICGA newsletter to receive alerts of new issues and other journal news. Sign up via this link:  tiny.cc/ICGsignup .

Latest Newsletter : You can view the latest newsletter here . 

Latest Articles

Discover the contents of the latest journal issue:.

Editorial: Many quests Mark Winands

Los Alamos chess game 2 (after P-K3) is solved; black wins in 21 moves Roger Sayle

2024 world computer chess championships: The end of an era 1974–2024 Jonathan Schaeffer

Advances in Computer Games (ACG 2023) conference report Chu-Hsuan Hsueh, Michael Hartisch, Jonathan Schaeffer

ICGA treasure’s report for 2023 Hiroyuki Iida

Sustainable Development Goals

The content of this journal relates to sdg:.

sdg symbol

Visit the SDG page for more information.

Related news, sage grows research portfolio by acquiring ios press.

Los Angeles, USA – Global independent academic publisher Sage  has acquired IOS Press, an independent publisher founded in Amsterdam in 1987 that specializes in...

More Than 75% of IOS Press Journals Now Have Journal Impact Factors

Amsterdam, the Netherlands – IOS Press , an independent international publishing house producing peer-reviewed content covering science, technology, and medicine...

Related Publications

Nonmonotonic reasoning with defeasible rules on feasible and infeasible worlds, publication date, modern management based on big data v, image processing, electronics and computers.

  • 1-800-NAT-UNIV (628-8648)
  • Bachelor of Arts Degree in Early Childhood Education (BAECE)
  • Bachelor of Arts in Early Childhood Development with an Inspired Teaching and Learning Preliminary Multiple Subject Teaching Credential (California)
  • Bachelor of Arts in English
  • Bachelor of Arts in History
  • Master of Arts in Social Emotional Learning
  • Master of Education in Inspired Teaching and Learning with a Preliminary Multiple and Single Subject Teaching Credential and Intern Option (CA)
  • Master of Arts in Education
  • Master of Early Childhood Education
  • Education Specialist
  • Doctor of Education
  • Doctor of Philosophy in Education
  • Doctor of Education in Educational Leadership
  • Ed.D. in Organizational Innovation
  • Certificate in Online Teaching (COT) Program
  • Online Medical Coding Program
  • Building Our Team Through Community Policing
  • Inspired Teaching and Learning with a Preliminary Single Subject Teaching Credential
  • Inspired Teaching and Learning with a Preliminary Multiple Subject Teaching Credential and Internship Option (California)
  • Preliminary Administrative Services Credential (CA Option)
  • Preliminary Education Specialist Credential: Mild/Moderate with Internship Option (CA)
  • All Teaching & Education
  • Associate of Science in Business
  • Bachelor of Business Administration
  • Bachelor of Science in Healthcare Administration
  • Bachelor of Arts in Management
  • Master of Business Administration (MBA)
  • Master of Public Health (MPH)
  • Master of Science in Data Science
  • Master of Public Administration
  • Doctor of Criminal Justice
  • Doctor of Philosophy in Organizational Leadership
  • Doctor of Business Administration
  • Doctor of Philosophy in Business Administration
  • Post-Baccalaureate Certificate in Business
  • Post-Master's Certificate in Business
  • Graduate Certificate in Banking
  • Certificate in Agile Project Management
  • All Business & Marketing
  • Bachelor of Science in Nursing (BSN) (California)
  • Bachelor of Science in Nursing (BSN) Second Bachelor Degree (California)
  • Bachelor of Science in Clinical Laboratory Science
  • Bachelor of Science in Public Health
  • Master of Science in Nursing
  • Master of Science in Health Informatics
  • Master of Healthcare Administration
  • Doctor of Nurse Anesthesia Practice (DNAP)
  • Doctor of Health Administration
  • Doctor of Nursing Practice in Executive Leadership
  • LVN to RN 30 Unit Option Certificate
  • Psychiatric Mental Health Nurse Practitioner Certificate
  • Family Nurse Practitioner Certificate
  • Emergency Medical Technician Certificate
  • All Healthcare & Nursing
  • Bachelor of Arts in Psychology
  • Bachelor of Arts in Integrative Psychology
  • Bachelor of Science in Criminal Justice Administration
  • Bachelor of Arts in Sociology
  • Master of Science in Applied Behavioral Analysis Degree
  • Master of Arts Degree in Counseling Psychology
  • Master of Arts in Consciousness, Psychology, and Transformation
  • Doctor of Clinical Psychology (PsyD) Program
  • Doctor of Philosophy in Marriage and Family Therapy
  • Doctor of Philosophy in Psychology
  • Doctorate of Marriage and Family Therapy
  • Graduate Certificate in Trauma Studies
  • Post-Master's Certificate in Psychology
  • Post-Baccalaureate Certificate in Applied Behavior Analysis
  • Pupil Personnel Services Credential School Counseling (PPSC)
  • University Internship Credential Program for Pupil Personnel Services School Counseling (California Only)
  • All Social Sciences & Psychology
  • Bachelor of Science in Cybersecurity
  • Bachelor of Science in Electrical and Computer Engineering
  • Bachelor of Science in Computer Science
  • Bachelor of Science in Construction Management
  • Master of Science in Cybersecurity
  • Master of Science in Computer Science
  • Master of Science in Engineering Management
  • Doctor of Philosophy in Data Science
  • Doctor of Philosophy in Computer Science
  • Doctor of Philosophy in Technology Management
  • Doctor of Philosophy in Cybersecurity
  • All Engineering & Technology
  • Associate of Arts in General Education
  • Bachelor of Arts in Digital Media Design
  • Bachelor of Arts in General Studies
  • Master of Arts in English
  • Master of Arts in Strategic Communication
  • Foreign Credential Bridge Program
  • All Arts & Humanities
  • Graduate Certificate in Forensic and Crime Scene Investigations
  • Bachelor of Public Administration
  • Bachelor of Science in Homeland Security and Emergency Management
  • Minor in Business Law
  • Master of Criminal Justice Leadership
  • Master of Forensic Sciences
  • Master of Science in Homeland Security and Emergency Management
  • Doctor of Public Administration
  • College of Law and Public Service
  • All Criminal Justice & Public Service
  • Paralegal Specialist Certificate Corporations
  • Paralegal Specialist Certificate Criminal Law
  • Paralegal Specialist Certificate Litigation
  • Associate of Science in Paralegal Studies
  • Bachelor of Arts in Pre-Law Studies
  • Bachelor of Science in Paralegal Studies
  • Juris Doctor
  • Associate of Science in Human Biology
  • Associate of Science in General Education
  • Bachelor of Science in Biology
  • Bachelor of Science in Mathematics
  • All Science & Math
  • Program Finder
  • Undergraduate Admissions
  • Graduate Program Admissions
  • Military Admissions
  • Early College
  • Credential & Certificate Programs
  • Transfer Information
  • Speak to an Advisor
  • How to Pay for College
  • Financial Aid
  • Scholarships
  • Tuition & Fees
  • NU offers a variety of scholarships to help students reduce their financial burden while focusing on achieving their goals. Explore Scholarships
  • Academic Schools/Colleges
  • University Leadership
  • Office of the President
  • Academies at NU
  • Course Catalog
  • Accreditation
  • Workforce and Community Education
  • President’s Circle
  • Board of Trustees
  • NU Foundation
  • Military & Veterans
  • Coast Guard
  • Space Force
  • National Guard & Reservist
  • Military Spouses & Dependents
  • Military Resources
  • NU proudly serves active duty and Veteran students from all branches of the military — at home, on base, and abroad. Military Admissions
  • Online Degrees & Programs
  • Consumer Information
  • Student Login
  • Graduation Events
  • Student Portal
  • Student Bookstore
  • Student Resources
  • Dissertation Boot Camp
  • Show your NU pride and shop our online store for the latest and greatest NU apparel and accessories! Shop Now
  • Request Info
  • Our Programs

Ask an Expert: How Computer science Has Impacted Games

How Computer science Has Impacted Games

When you have a question, it’s always best to turn to a subject matter expert for answers. In our blog series, Ask An Expert, National University staff and faculty members take turns answering challenging questions in their areas of expertise. This time we speak to computer science professor, Subra Subramanya, about how computer science has impacted games over the years.

Gaming has come a long way since players plopped a coin in a pinball machine.

As computer science has evolved, so have many industries rooted in computing technology, including the video game industry — or simply “gaming” as it’s often called today. But at its center are some of the same concepts computer science students have been learning for decades.

“Programming is an essential foundation for game design,” says National University computer science professor Dr. S.R. Subramanya. “It’s well-grounded in languages like Java and C++.”

Let’s take a look examples of how computer science has impacted games as well as explore how to study computer science, a degree which can prepare you for a career in the gaming industry.

Enhanced Graphics

Wait. Are those real-life actors? With all of the advancement in game design, sometimes it’s surprisingly hard to tell the difference between computer-generated characters and an actual human. The evolution of television technology has also impacted the look and feel of games. According to GameDesigning.org , original gaming systems “weren’t designed to support high-definition picture modes.” So, aside from graphics looking more realistic, this upgrade in visuals was also practical. Televisions were becoming more powerful, so the game design had to keep up.

Multiplayer Games

You could say multiplayer games have been around for some time. For instance, friends could take turns on the arcade version of PacMan; when one player “dies” the next person is up, and so on. Later, two or more players could compete in console-based games, such as racing or wrestling, by playing against each other in real time. Around the turn of the century, thanks to the internet, the concept of multiplayer games allowed for people around the world to compete (or collaborate) in the same game, while also communicating with the other players.

Cloud-based Gaming

In years past, when you wanted to play a game, you essentially had one device on which to run the program. Perhaps your Nintendo console and your living room television, or maybe running a game like The Sims on your home desktop.

Cloud-based gaming allows players to pick up their game from various devices, from mobile to TV to computer. Gartner Research vice president Brian Blau told Yahoo! Finance in 2018 that, “there’s a big push in the game industry to play games in lots and lots of different ways.”

Augmented Reality: Living in the Game

How computer science has impacted games also involves augmented reality (AR). Virtual reality (VR) is the predecessor to augmented reality, but the difference is that VR takes the user somewhere else, while AR works in existing surroundings as if it were overlaying a “skin” onto the real world. The Pokemon Go craze a few years ago is an example of AR technology. In this game, players could find and capture Pokemon characters in actual locations. The technology essentially adds a “skin” to the real world.

Gamification in Education

An early example of gamification —  before it was called that —  is Girl Scout badges. You learn something or do a task, and then you earn something: in this case a patch to sew on your sash. This concept is found in many applications today from health and wellness programs to getting points for “checking in” to places through apps like Swarm.

Subramanya says this has also been working its way into education at all levels. “There are certainly a lot of opportunities for gaming,” explained Subramanya. “My take is that I’d like to see people use those skills in developing educational software.”

He adds that incorporating gaming into instructional design, especially in online degree programs, can keep students engaged and immersed.

Join the Gaming Industry: How to Study Computer Science

With the growth of and advances in games, there are more opportunities for computer science graduates in the gaming industry. As Subramanya says, programming skills and a mathematical foundation are essential to a career in game development and design. But when considering how computer science has impacted games, Subramanya explains knowledge and skills beyond programming, such as “computer graphics and the user-interface design,” are helpful.

Bachelor’s and master’s degree programs, such as the Bachelor of Science in Computer Science and Master of Science in Computer Science at National University, can give students that foundation. In fact, online degrees in these areas may be of special interest to those in the gaming community!

There are many other examples of how computer science has impacted gaming over the years, including portable games, social gaming, open-world game design, voice commands, and motion. If being part of this industry’s exciting future interests, you visit our technology & engineering degrees programs page to learn more.

Dr. S.R. Subramanya is a professor in the School of Engineering and Computing at National University in San Diego, California. He is also the president and CEO of Exskillence, a company specializing in technical skills enhancement workshops for students, as well as for corporate employees. He has also worked at several multinational corporations – ASEA AB in Vasteros, Sweden; NOKIA in Helsinki, Finland; and LG Electronics in San Diego, California. His current research interests are in algorithm design, novel services for digital content, mobile applications, and computer science education.

Learn More About Our University and Scholarships

Join our email list!

  • First Name *
  • Form Email Field
  • Consent * I agree to the terms and conditions below. *

Recent Resources

  • San Diego Couple Honored for Pioneering Contributions to Sports Medicine, Wellness and Community Service July 17, 2024
  • A Guide to Trauma Informed Care Principles July 12, 2024
  • Pioneer in Workforce and Continuing Education Expands Upskilling Offerings for Public and Private Sector Employer Partners July 9, 2024

Your passion. Our Programs.

Choose an area of study, select a degree level.

Search the site

Modal window with site-search and helpful links

Featured Programs

  • Business and Management
  • Computer Science
  • Teaching and Credentials

Helpful Links

  • Admissions & Application Information
  • Online College Degrees & Programs
  • Student Services
  • Request Your Transcripts

Terms & Conditions

By submitting your information to National University as my electronic signature and submitting this form by clicking the Request Info button above, I provide my express written consent to representatives of National University and National University affiliates (including City University of Seattle) to contact me about educational opportunities. This includes the use of automated technology, such as an automatic dialing system and pre-recorded or artificial voice messages, text messages, and mail, both electronic and physical, to the phone numbers (including cellular) and e-mail address(es) I have provided. I confirm that the information provided on this form is accurate and complete. I also understand that certain degree programs may not be available in all states. Message and data rates may apply. Message frequency may vary.

I understand that consent is not a condition to purchase any goods, services or property, and that I may withdraw my consent at any time by sending an email to [email protected] . I understand that if I am submitting my personal data from outside of the United States, I am consenting to the transfer of my personal data to, and its storage in, the United States, and I understand that my personal data will be subject to processing in accordance with U.S. laws, unless stated otherwise in our privacy policy . Please review our privacy policy for more details or contact us at [email protected] .

By submitting my information, I acknowledge that I have read and reviewed the Accessibility Statement . 

By submitting my information, I acknowledge that I have read and reviewed the Student Code of Conduct located in the Catalog .

National University

Chat Options

  • Open access
  • Published: 06 September 2023

Game-based learning in computer science education: a scoping literature review

  • Maja Videnovik   ORCID: orcid.org/0000-0002-9859-5051 1 ,
  • Tone Vold   ORCID: orcid.org/0000-0003-4850-3363 2 ,
  • Linda Kiønig   ORCID: orcid.org/0000-0001-8768-9370 2 ,
  • Ana Madevska Bogdanova   ORCID: orcid.org/0000-0002-0906-3548 3 &
  • Vladimir Trajkovik   ORCID: orcid.org/0000-0001-8103-8059 3  

International Journal of STEM Education volume  10 , Article number:  54 ( 2023 ) Cite this article

15k Accesses

7 Citations

4 Altmetric

Metrics details

Using games in education has the potential to increase students’ motivation and engagement in the learning process, gathering long-lasting practical knowledge. Expanding interest in implementing a game-based approach in computer science education highlights the need for a comprehensive overview of the literature research. This scoping review aims to provide insight into current trends and identify research gaps and potential research topics concerning game-based learning in computer science. Using standard methodology for scoping review, we identified 113 articles from four digital libraries published between 2017 and 2021. Those articles were analyzed concerning the educational level, type of the game, computer science topic covered by the game, pedagogical strategies, and purpose for implementing this approach in different educational levels. The results show that the number of research articles has increased through the years, confirming the importance of implementing a game-based approach in computer science. Different kinds of games, using different technology, concerning different computer science topics are presented in the research. The obtained results indicate that there is no standardized game or standardized methodology that can be used for the creation of an educational game for computer science education. Analyzed articles mainly implement a game-based approach using learning by playing, and no significant focus is given to the effectiveness of learning by designing a game as a pedagogical strategy. Moreover, the approach is mainly implemented for developing computational thinking or programming skills, highlighting the need for its implementation in other topics beyond programming.

Introduction

The world is changing very fast due to the emergence of technology in our everyday lives. This tremendous change can be noticed in different areas, including education. Students are influenced by the digital era, surrounded by technology and working with a massive amount of digital information on an everyday base. They are used to interactive environments and fast communication and prefer learning by doing (Unger & Meiran, 2020 ). Traditional learning environments, where students should sit and listen to the information provided by the teachers are unacceptable for them (Campbell, 2020 ). Students require active learning environments, using the possibilities of various technology applications to gain knowledge. They seek more interesting, fun, motivating and engaging learning experiences (Anastasiadis et al., 2018 ).

Creating engaging learning environments can develop students' critical thinking, problem-solving skills, creativity and cooperation, preparing students for living in a constantly changing world (Joshi et al., 2022 ; Lapek, 2018 ; Tang et al., 2020 ). Education needs to shift toward active learning approaches that will encourage students to engage on a deeper level than traditional lecture-based methods (Boyer et al., 2014 ). To achieve this, teachers must find an approach tied to digital tools that students use daily (Videnovik et al., 2020 ).

Implementation of a game-based learning approach for creating engaging learning environments

Game-based learning is considered one of the most innovative learning approaches for increasing students' interest in education by playing games (Priyaadharshini et al., 2020 ). It refers to using games as an educational tool or strategy to facilitate learning and engagement (Li et al., 2021 ). Game-based learning involves designing and incorporating educational content within a game format, where players actively participate and interact with the game mechanics to acquire knowledge or develop skills. Many approaches tackle the umbrella of application of game-based learning in different educational fields. Different playful experiences can enable children to construct knowledge by playing and exploring a real-world problem often driven by students’ interest in inquiry (Hirsh-Pasek, 2020 ). Gamification is a process that uses game elements, such as points, rewards, badges and competition during the learning process, establishing interactive and engaging learning environments (Turan et al., 2016 ). Gamification aims to enhance motivation, engagement, and participation using the inherent appeal of games. Designing interactive and entertaining games, primarily for education, is a step forward in implementing game-based learning. Serious games enable players to cultivate their knowledge and practice their skills by overcoming numerous interruptions during gaming (Yu, 2019 ). Effectively designed serious games facilitate learning by stimulating creativity, igniting interest, promoting discourse, and cultivating a competitive drive for exploration in diverse fields. Different mobile and location-based technologies provide opportunities to embed learning in authentic environments and thereby enhance engagement and learning outside traditional formal educational settings (Huizenga et al., 2009 ). Those games can simulate various aspects of reality, such as driving a vehicle, managing a city, or piloting an aircraft, allowing players to experiment and make decisions in a safe space without real-world consequences (Toh & Kirschner, 2020 ).

Games enable the integration of intrinsic and extrinsic motivational components to create an environment, where players feel more motivated to engage in the activities (Hartt et al., 2020 ). When digital game-based learning is implemented, including key game design elements (collaboration, choice, feedback), there is typically a positive impact on student engagement (Serrano, 2019 ; Wang et al., 2022 ). Students approach gameplay with interest and dedication and are persistent in progressing it. Therefore, teachers must find different ways to implement a game-based approach in the classroom, utilizing students' engagement, persistence and motivation during gameplay for classroom activities. During game-based learning, students have fun and enjoy themselves with increased imagination and natural curiosity, which can lead to high levels of participation and the student's involvement in the learning process. In this way, students can be more successfully engaged in meaningful learning than traditional teaching methods (Hamari et al., 2016 ; Huizenga et al., 2009 ; Karram, 2021 ).

Research on using a game-based learning approach in education

In the last decade, the game-based approach is receiving increasing attention in the research community due to its potential to increase students' motivation and engagement, promoting a student-centred learning environment. Many researchers show that digital game-based learning is becoming a powerful tool in education, making learning more enjoyable, easier and efficient (Boyle et al., 2016 ; Hafeez, 2022 ). Implementation of a game-based learning approach can provide students with an engaging, motivating and stimulating environment (Ghergulescu & Muntean, 2012 ; Hwang et al., 2014 ), supporting them to focus on the task and increasing overall learning experiences (Hamari et al., 2016 ). Moreover, game-based learning has the potential to improve students’ competencies and academic performance (Clark et al., 2016 ; López-Fernández et al., 2021a , 2021b ; Mezentseva et al., 2021 ; Noroozi et al., 2020 ; Sanchez Mena & Martí-Parreño, 2017 ; Vu & Feinstein, 2017 ). It presents the learners with rich, immersive environments and experiences that are not just about learning facts but enables the development of problem-solving, decision-making, and strategic planning (Lymbery, 2012 ; Sung & Hwang, 2013 ) skills. In addition, the student's academic achievement using a game-based approach is better than those learning through the traditional method (Arcagök, 2021 ; Partovi & Razavi, 2019 ; Roodt & Ryklief, 2022 ; Wang et al., 2022 ). Educational games promote active and self-directed learning, enabling students to learn from authentic situations and receive immediate feedback (Pellas & Mystakidis, 2020 ; Zhao et al., 2021 ). It can be highly personalized, allowing students to learn at their own pace and in a way best suited to their individual needs and learning styles, engaging them in the self-assessment process (Videnovik et al., 2022 ). In a gaming environment, students can explore different scenarios, make choices, and learn from the consequences of their actions without fear of making a mistake.

Despite the great potential of the game-based approach for learning, it must be noted that developing educational games can be very complex and costly, and faces significant challenges (Boyle et al., 2016 ). The process of designing an educational game needs a lot of planning and requires a lot of skills (Hussein et al., 2019 ). Teachers do not have necessary skills to develop a game that combines entertainment and educational elements to increase student's interest and motivation during learning (Qian & Clarck, 2016 ). On the other side, game developers have problem to align educational goals within the game. In addition, the games must be well-designed and with the right level of complexity so the learners should not be bored or frustrated during the play (Liu et al., 2020 ; Vlahu-Gjorgievska et al., 2018 ), taking into account both educational and entertainment elements. That is why educators cannot depend solely on professional game designers and must take on the responsibility of creating these immersive learning experiences themselves or by engaging their students in the design process.

Game-based learning approach in computer science education

The game-based approach provides a dynamic and effective way for students to learn and apply their knowledge in a variety of subjects, such as math (Vankúš, 2021 ), physics (Cardinot & Fairfield, 2019 ), languages (Lee, 2019 ), and history (Kusuma et al., 2021 ). This approach allows students to learn complex concepts and skills in a fun and interactive way while also fostering critical thinking and collaboration. It is particularly effective in computer science, where students can learn about algorithms, data structures, networks, software testing and programming languages by designing and testing their games and simulations (Kalderova et al., 2023 ). In addition, game-based learning can help to bridge the gap between theory and practice, allowing students to apply their knowledge in a real-world context (Barz et al., 2023 ).

The importance of computer science has been emphasized in the last decade through different campaigns and online platforms. Their main aim is to develop students' computational thinking skills and attract students to coding, mainly through a game-based approach (code.org, codeweek.org). They offer teachers access to materials and learning scenarios covering different unplugged activities and block-based programming. Students have an opportunity to play games and learn basic programming concepts through fun and interactive activities, developing collaboration and competitiveness at the same time. Game narratives, collecting points, and immediate feedback through these games increase students’ engagement. These platforms are a valid option for developing computational thinking at an early age and a good way for students to develop creativity, critical thinking and problem-solving skills (Barradas et al., 2020 ).

Various block-based programming languages, which are also accessible online (Scratch, Footnote 1 Snap, Footnote 2 Blockly Footnote 3 ), are used to develop students' computational thinking and block-based programming skills, especially in primary education. In addition, they support the development of interactive projects that students can use afterward (Tsur & Rusk, 2018 ). Moreover, students can develop animations, interactive stories, and games, which allow them to engage in the coding process, learn programming concepts and even learn about other computer science topics during game design.

Topics connected with programming are the most common in computer science, but learning how to program is often recognized as a frustrating activity (Yassine et al., 2018 ). Learning object-oriented programming languages is especially difficult for students, because programming concepts are complex, cognitively demanding, require algorithmic thinking and problem-solving skills, and is a long-term process (Zapušek & Rugelj, 2013 ). Game-based learning stimulates active learning and enables students to learn about programming concepts in fun and engaging ways through visual interfaces and engaging environments (CodeCombat, Footnote 4 Alice, Footnote 5 Greenfoot Footnote 6 ). Those engaging and motivating environments enable simplifying complex programming concepts, such as inheritance, nested loops, and recursion (Karram, 2021 ).

Different pedagogical strategies can be used to implement game-based learning in computer science, empowering students' skills and increasing their active engagement in learning. For example, students can deepen their knowledge and skills on a given topic by playing the game (Hooshyar et al., 2021 ; Shabalina et al., 2017 ) or through the process of game design (Denner et al., 2012 ; Zhang et al., 2014 ). In both cases, the game-based approach can increase students' motivation and engagement in learning (Chandel et al., 2015 ; Park et al., 2020 ).

Existing reviews of game-based approach in computer science

Existing reviews of game-based approach in computer science provide valuable information about the latest trends in the implementation of game-based approach in the last few years. Table 1 presents latest trends in the implementation of game-based learning in computer science education.

Most of the review articles analyze publications that describe the implementation of game-based approach for learning programming (Abbasi et al., 2017 ; Diaz et al., 2021 ; Dos Santos et al., 2019 ; Laporte & Zaman, 2018 ; Shahid et al., 2019 ), from different aspects: game design, game elements, or their evaluation. However, there are some of them tackling other topics, such as cybersecurity (Karagiannis et al., 2020 ; Tioh et al., 2017 ) or cyberbullying (Calvo-Morata et al., 2020 ). Sharma et al. ( 2021 ) analyzes the impact of game-based learning on girls’ perception toward computer science. There are review articles that focus on just one aspect of computer science. For example, Chen et al. ( 2023 ) provides meta-analyses to investigate potential of unplugged activities on computational thinking skills.

In our review, we aim to perform the broader analysis of the research articles referring to the game-based approach in various computer science topics, different educational levels and different types of games. For that purpose, instead of systematic review, we have opted to perform the scoping review on significantly larger set of articles.

Valuable insight regarding the game-based approach in computer science has been provided in research concerning different educational levels, computer science topics, and used games. However, computer science is a field that is changing very fast, and the number of games that can be used for developing students' knowledge and skills is increasing all the time. As a result, continuous research in this field should be done.

This research aims to elaborate on current trends concerning the game-based approach in computer science. It focuses on the educational level, covered computer science topic, type of the game, purpose for its use, and pedagogical strategies for the implementation of this approach. Moreover, possible gaps and potential research topics concerning game-based learning in computer science in primary education are identified.

Current review

This research represents scoping review that identifies the educational context and the type of games used for implementing a game-based learning approach in computer science. The scoping review method was selected over systematic literature review, because we wanted to determine the scope of the literature in the field of game-based learning in computer science education, to examine how research is done on this topic and to identify and analyze research gaps in the literature (Munn et al., 2018 ).

Following Arksey and O’Malley ( 2005 ) five-step framework, which adopts a rigorous process of transparency, enabling replication of the search method and increasing the reliability of the results, the steps of the applied review process are: to (1) identify research questions (2) identify relevant studies, (3) study selection of papers, (4) charting the data, (5) summarizing and reporting the results.

Research questions

The focus of our research was to analyze what type of games were used in computer science, the subject's topics that were covered by the game and pedagogical strategies for implementing game-based learning, comparing all these in different educational levels. Starting from this, our research questions are:

RQ1: What kind of educational games are usually used during the implementation of the game-based approach in computer science?

Various games are used to cover topics from computer science, from block-based serious games (Vahldick et al., 2020 ) to educational escape rooms (López-Pernas et al., 2019 ). Using different games influences the learning process differently (Chang et al., 2020 ). The RQ1 seeks to identify and understand the types of educational games that are commonly utilized in the context of teaching computer science. Exploration of the variety of used games provides insights into the different approaches, mechanics, and formats used to enhance learning outcomes.

RQ2: Which pedagogical strategy is mostly used in the published research?

There are various strategies for implementing game-based learning in computer science education. The implementation strategies refer to whether students should learn by playing the game (Malliarakis et al., 2014 ) or by designing a game (Denner et al., 2012 ). The strategies can differ based on the gender of students (Harteveld et al., 2014 ), students' age (Bers, 2019 ), or the adopted approach by policymakers (Lindberg et al., 2019 ). RQ2 aims to identify the predominant pedagogical strategy employed in the published research on game-based approaches in computer science education. By examining the pedagogical strategies, researchers can gain insights into the most effective instructional methods that facilitate learning through game-based approaches. Furthermore, the findings can inform educators and researchers in designing and implementing effective instructional strategies that align with the goals of computer science education.

RQ3: Which computer science topics are covered by the game-based approach?

Game-based learning can be used to teach different computer science topics, from introduction topics (Fagerlund et al., 2021 ; Mathew et al., 2019 ), to core topics (Karram, 2021 ). RQ3 aims to provide value in exploring the specific computer science topics addressed through game-based approaches. In addition, it helps identify the range of topics that have been integrated into educational games. By understanding the computer science topics covered, researchers can assess the breadth and depth of the game-based approach and identify potential gaps or areas for further exploration in the curriculum.

RQ4: What are the potential research topics concerning the implementation of a game-based approach in computer science?

RQ4 is essential as it seeks to identify potential areas for future research in the implementation of game-based approaches in computer science education. It might include specific computer science topics (Calvo-Morata et al., 2020 ), strategies to implement game-based learning in computer science (Hooshyar et al., 2021 ), or ways to analyze the effects of game-based learning (Scherer et al., 2020 ). By exploring research topics that have not been extensively studied or require further investigation, researchers can identify new directions and opportunities for advancing the field. This can contribute to the ongoing development and improvement of game-based approaches in computer science education, fostering innovation and addressing emerging challenges.

Methodology

To answer research questions, we analyzed the contents of articles published from 2017 to 2021. Due to the rapid development of technology and change in the learnt computer science topics as well as designed game with new technology and tools, we have decided to research the articles that refer just to the interval of 5 years. As technology progresses swiftly, studying 5 year interval of the published literature ensures that scoping review results analyze the most current tools, approaches, and methodologies being utilized in the field of computer science education.

The research was done according to the PRISMA-ScR (Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for Scoping Reviews) guidelines (Peters et al., 2020 ). The PRISMA-ScR methodology is a structured approach used to conduct comprehensive and transparent scoping reviews. It involves identifying a research question, performing a systematic search of relevant literature, applying inclusion and exclusion criteria to select studies, extracting data from the included studies, analyzing and synthesizing the data to identify key themes or patterns, and reporting the findings. It aims to map the existing literature on a particular topic, identify key concepts, and examine the extent, range, and nature of research available. It is particularly useful for exploring complex and diverse research questions.

There is a large number of articles regarding the topic, so performing this kind of research manually seemed like labor-intensive work. Therefore, we have identified the opportunity to use the Natural Language Processing (NLP) toolkit (Zdravevski et al., 2019 ) to automate the literature search, scanning, and eligibility assessment. We have used this toolkit for article identification and selection (i.e., scanning procedures and eligibility criteria assessment). The search considered articles indexed in four digital libraries: IEEE, PubMed, Springer and Elsevier. The NLP toolkit requires structured data input comprising keywords, properties, property groups, required relevance, included sources, and start and end years.

The provided keywords serve as search criteria within available libraries, acting as the primary filter to determine which articles will be gathered for further analysis. At the beginning of setting up the NLP toolkit for the research, to address different games that can be used in education, we have identified the main keywords to be "Serious Games", "Educational Games", "Games in education" or "Games for learning". The NLP toolkit used these keywords to identify the potentially relevant articles in the mentioned digital libraries.

Furthermore, the NLP toolkit was adjusted to search specific properties (words or phrases) within the title, abstract, or keywords of already identified articles to select relevant articles in more detail, according to the features (properties groups) of the game-based learning approach that we are interested in: subject, educational level, educational context, purpose and used technology. Properties groups address synonyms and various versions of the phrase (e.g., educational games and serious games). To be included in the results, at least one representative from each property group must appear in the title or abstract of the article, thereby functioning as a secondary filter for identifying relevant articles.

The property group "subject" was set as mandatory during the search, because we were interested in analyzing articles that refer to game-based learning just in computer science. Since the name of this subject is different in different countries, we have used synonyms, such as "programming", "coding", and "informatics". The property group "age" or educational level included different synonyms for primary and secondary education, as well as higher education, although we did not make this property mandatory. To search about the used technology (web, online, mobile, augmented reality, virtual reality), we have set one property group to include a different kind of used technology, and we also set a property group that refers to the aim of using these educational games (to achieve students' engagement, increase motivation, evaluation of educational results, etc.). A more detailed description of the properties groups is given in Table 2 .

The following input parameter for the NLP toolkit set-up is the minimum relevant properties. In this research, it was set that each article has to contain a minimum of two of the previously defined properties to be considered relevant. The quality analysis of the relevant articles followed in the next step of the methodology.

Study selection

The initial search in four digital libraries: IEEE, PubMed, Springer and Elsevier, has identified 43,885 articles concerning using game-based learning in computer science. After articles had been identified based on the specified keywords and retrieved from the publishers, the duplicates were identified according to the article DOI as their unique identifier and removed, which has decreased the number of articles to 21,002. In the next step, the articles selection (screening and eligibility assessment) procedures followed, discarding articles not published in the required period or for which the title or abstract could not be analyzed because of parsing errors, unavailability, or other reasons. The screening process eliminated 11,129 articles and the remaining 9873 articles underwent an automated eligibility assessment using the advanced NLP toolkit functionalities. The automated eligibility analysis involved the following processing: tokenization of sentences (Manning et al., 2014 ; Webster et al., 1992 ) and English stop words removal, stemming, and lemmatization using the Natural Language Toolkit library (Bird, 2006 ). Furthermore, articles containing less than two properties were removed, which left 1209 articles eligible for further manual analysis and inclusion in identifying the research trends and summarizing the results.

For each of the articles from the collection of relevant articles, the toolkit automatically generated a bibliographic file (as defined by BibTeX reference management software). This file was manually analyzed in more detail to identify the most relevant articles for the purpose of our study. First, the abstract was read to see whether the article was relevant, and if that did not provide enough information, the whole article was read. For each of the research questions we used the same approach, but with different focuses. For the first research question, we looked for any specific game name. For the second research question, we were looking for any mentioning of the pedagogical approaches or strategies. For the third research question, we looked for different computer science topics used in computer science curricula. In that way, the most relevant articles concerning first three research questions were identified. The last research question is related to future potential research topics in the field of game-based learning in computer science education, so it was not used during this phase of selection of relevant articles.

As a result of the manual analysis of articles’ titles, articles that did not refer to computer science subjects were excluded, which left just 206 articles. We could not obtain the full text for some of articles, so they were excluded from further analyses. Some articles did not refer to using games to teach computer science topics, so they were also removed. The same was the case with a few articles not written in English. Finally, we had 125 relevant articles.

Nine relevant articles were review papers that referred to different game-based learning approaches at different educational levels. Among identified articles is a book describing different teaching methods in computer science education, including game-based learning (Hazzan et al., 2020 ). Two book chapters refer to different approaches of using game-based learning in education (Bellas et al., 2018 ; Zaw & Hlaing, 2020 ). These articles were also excluded from the list.

Finally, we finished the selection process and got 113 relevant articles using educational games in computer science that were the subject of further analysis.

The information flowchart presenting the numbers of identified, screened, processed, and removed articles in the automated NLP procedure and articles removed during the manual analysis is presented in Fig.  1 .

figure 1

Flowchart of the PRISMA-SCR-based selection process

After the final identification of the most relevant studies concerning game-based learning in computer science, summaries were developed for each article. Information about their correspondence to education, educational level, used game, type of the game, covered computer science topic, educational context and general usefulness of the article was provided.

Distribution of published articles through the years

The distribution of the articles concerning the game-based approach in computer science through the years is presented in Fig.  2 . It can be noticed that the number of articles was increasing through the years, but then suddenly, in 2021, that number decreased. The reason might be found in the situation with the pandemic, because in 2020 and 2021, most of the schools were closed. In some of them, the teaching was transferred online, which resulted in a huge change in the way of teaching and learning, and it was a period of adaptation for teachers and students at the same time, which might lead to a decrease of the research articles.

figure 2

Distribution of the published articles through the years

Distribution of published articles per country

The distribution of the published articles per country differs from country to country. Figure  3 presents the distribution of published articles per country, showing only the countries that have more than five published articles concerning game-based learning between 2017 and 2021. Most articles are published in the United States, followed by Brazil and Greece.

figure 3

Distribution of the published articles per country, showing countries with more than five published articles

Further analysis of the relevant articles depending on the country, where the research was conducted, shows that just 17 (of 113) articles are joint work of researchers from different countries. Moreover, just two present joint research on game-based learning from three countries. The first one describes the methodology implemented within the European initiative Coding4girls, which proposes to teach coding through a game design based on a design thinking methodological approach linked to creativity and human-centred solutions (De Carvalho et al., 2020 ). The second joint research (Agbo et al., 2021 ) describes the students’ online co-creation of mini-games to develop their computational thinking skills. Interestingly, all other published articles describe implementing a game-based learning approach in computer science in the local context, making it difficult to generalize the conclusions and the research outcomes.

Distribution of published articles by publisher

Most of the relevant researched articles are published by IEEE Xplore (86 of 113) but mostly published as part of the proceedings at different conferences. This might explain why the number of published articles from IEEE Xplore differs from other publishing companies. Figure  4 presents the distribution of the articles by each of the publishers in detail, comparing published articles in journals and at conferences.

figure 4

Distribution of the published articles by different publishers

Distribution of published articles by educational level

Identifying the number of articles according to the educational level was more complicated due to the different educational systems in different countries, resulting in a different understanding of the terms “primary”, and “secondary” education. In some countries, the same educational level is entitled as “primary”, and in others as “lower secondary” or even “middle school”. For example, in some countries, the primary school includes 6–14-year-old students; in others, it is divided, so there are primary (from 6 to 10 years), middle (11–13 years) and high schools (14–18 years); and in some, there are even lower secondary school (12–16 years). Therefore, we have tried to combine different categories according to the student’s age and to gather three levels: primary, secondary and university, according to the local context (primary education includes 6–14 years, secondary education includes 15–18 years). The situation with the distribution of the relevant articles is presented in Fig.  5 .

figure 5

Distribution of the published articles in different educational levels

It can be noticed that most of the articles concern universities, although the number of articles that concern using games in computer science in primary and secondary schools is not small. It can be expected, because most of the articles refer to using games for developing programming skills, which is present mainly at the university level. However, in some countries, primary school students learn fundamental programming concepts.

Distribution of published articles by the purpose of implementation

The purpose of the research concerning game-based learning in computer science is different and mostly depends on the type of the game as well as the topic that is covered by the game. The distribution of the published articles according to the purpose of the implementation of the research is presented in Fig.  6 . However, it must be mentioned that it was difficult to distinguish the purposes of implementing the game-based approach in computer science, because the purpose was not clearly stated in the articles or there was overlapping among different categories.

figure 6

Distribution of the published articles according to the purpose of the implementation

In the most articles (66 of 113), the research is done to measure students’ learning achievement or to evaluate the benefits of the game-based approach by comparing students’ knowledge and skills before and after implementing this approach. In addition, some articles are interested in students’ engagement and raising students’ interest and motivation for the learning process by implementing a game-based approach. However, just a few articles refer to using this approach for measuring students’ overall satisfaction with the whole experience (3 of 113).

Distribution of published articles by implemented pedagogical strategy and used technology

Manual analyses of the included articles gave us insight into additional aspects of implementing a game-based approach in computer science. When we talk about the game-based approach, there are two main pedagogical strategies for implementation: students can learn by playing the game, and students can learn while creating the game. The distribution of those two approaches in the published articles indicates that learning by playing games is more frequently used than learning by creating games. Only 19 of 113 relevant articles refer to the implementation of a game-based approach, where students learn during the process of game design or are involved themselves in the creation of the game. In most of the articles, students just use the created game (previously created or designed for the purpose of the research) to develop their competencies on a given topic. Regarding the technology used for the creation of the games in the published articles, it can be noticed that most of the games are web-based (although they have a mobile version, too), and there are just a few articles concerning the use of the unplugged activities as a game-based approach for learning computer science.

Distribution of published articles by covered computer science topic

Most of the articles concerning computer science topics covered during the implementation of the game-based approach refer to using to develop students’ programming skills in object-oriented programming, followed by the articles concerning block-based programming and the development of computational thinking skills. The number of articles that utilize the game-based approach in all other computer science topics is significantly smaller (in total, 14 from 113 articles). Figure  7 contains more detailed information about this distribution.

figure 7

Distribution of the published articles according to the covered computer science topics

Types of educational games used for implementation of the game-based approach in computer science

Our research aims to provide information about the latest research trends concerning game-based learning in computer science education. Table 3 gives information about the implemented game, the type of the game, the computer science topic covered by the game, and the educational level, where the research concerning the game-based approach in computer science was carried out. The type of the game refers to the origin of the game creation, whether the game was already created and can be used or is created for the research by the author or by the students (they are learning during the game design process).

Detailed analysis of these relevant articles shows that different educational games are used to implement game-based learning in computer science, implementing different technologies for their design. Articles refer to using different platforms, environments or engines for creating games using different technology. In primary education, most implemented approaches include block-based environments, such as Blocky, Snap!, and Scratch. Those platforms give access to the already created game (De Carvallho et al., 2020 ; Sáiz Manzanares et al., 2020 ; Vourletsis & Politis, 2022 ) but also offer possibilities a game to be created by a teacher (Bevčič & Rugelj, 2020 ; Holenko Dlab & Hoic-Bozic, 2021 ; Wong & Jiang, 2018 ) or by the students during the learning process (Funke et al., 2017 ; Zeevaarders & Aivaloglouor, 2021 ). Even more, their use as a platform to code Arduino boards is presented in two of the articles (Sharma et al., 2019 ; Yongqiang et al., 2018 ). Block-based environments are used in the research in secondary education, too. For example, Araujo et al. ( 2018 ) measured students’ motivation for learning block-based programming by involving students in creating games in Scratch. Schatten and Schatten ( 2020 ) involve students in creating different games using CodeCombat during the CodeWeek initiative to increase their interest in programming, and Chang and Tsai ( 2018 ) are implementing an approach for learning programming in pairs while coding Kinnect with Scratch.

However, in the research articles concerning secondary education, it can be noticed that some specified games are created by the researcher (or teacher) to develop some concrete computer science skills. In these cases, the articles focus on the evaluation of the effectiveness of the game as an approach. For example, the chatbot’s serious game “PrivaCity” (Berger et al., 2019 ) is designed to raise students’ privacy awareness, as a very important topic among teenagers.

Similarly, “Capture the flag” is a game designed for learning about network security in a vocational school (Prabawa et al., 2017 ). The effectiveness of using the educational game “Degraf” in a vocational high school as supplementary material for learning graphic design subjects is measured by Elmunsyah et al. ( 2021 ). Furthermore, Hananto and Panjaburee ( 2019 ) developed the semi-puzzle game “Key and Chest” to develop algorithm thinking skills and concluded that this digital game could lead to better achievement than if the physical game is used for the same purpose. The number of games developed at the university level on a specific topic by the researchers is even more significant. However, there is still no standardized game, and the games differ among themselves depending on the topic covered by the game and the country, where the game is implemented.

Only a few games are mentioned more than once in the list of relevant articles. The implementation of “Code defenders” to enable students to learn about software testing in a fun and competitive way is researched by Clegg et al. ( 2017 ) and Fraser et al. ( 2020 ). However, the studies continue each other, presenting improvements in the game. Different block-based programming languages and online platforms such as Scratch, Snap!, and Code Combat are mentioned in several articles, too. Implementation of a game-based approach during the assessment process through the creation of quizzes in Kahoot is presented by Abidin and Zaman ( 2017 ) and Videnovik et al. ( 2018 ). Finally, several articles refer to the use of Escape room as a popular game implemented in an educational context (Giang et al., 2020 ; López-Pernas et al., 2019 , 2021 ; Seebauer et al., 2020 ; Towler et al., 2020 ). However, all these Escape room-style games are created on different platforms and cover different topics. Therefore, it can be concluded that no standardized type of game is implemented at a certain educational level or concerning a specific topic.

Further analyses were done concerning the type of the game, referring to the origin of the game: already created and just used for the research, created by the researcher for the purpose of the research or created by the students during the learning process. The distribution of the number of articles according to the type of the game in different educational levels is presented in Fig.  8 .

figure 8

Distribution of the published articles according to the game designer in different educational levels

Most of the articles describe the implementation of a game-based approach when the author creates the game to test the game’s efficiency and make improvements based on the feedback received by the students. The number of games created by the author is the biggest at the university level, and the most balanced distribution of different kinds of games (created by the author, students or already created) is present in primary education. Interestingly, the most significant number of articles that concern using games created by students is in primary education. It shows that students in primary education have been the most involved in the process of game design, although they are young and have less knowledge and skills than students at other educational levels. This could be result of the fact that the articles that refer to primary education present a game’s design only in a block-based environment and using basic programming concepts. However, research articles do not refer to a standardized methodology of a framework for the creation of a game, and each game is designed individually depending on the used technology, topic and educational level.

Pedagogical strategies for implementation of the game-based approach in computer science

A detailed analysis of the pedagogical strategies for implementing a game-based approach shows that most relevant articles use games as a tool for learning the content. This trend continues in the recent period as well (Kaldarova et al., 2023 ). Hence, students play the game (already created or created by an author) to gather knowledge or develop their skills. Detail distribution of the research articles regarding pedagogical strategies for implementing a game-based approach is presented in Fig.  9 and more detailed data can be found in Table 3 . Some articles explain how students learn during the process of the creation of a game. Those are different games at different educational levels, but they all concern the process of designing a game on some platform that will develop their programming skills. Unfortunately, no article describes the process of developing students’ knowledge and skills on different computer science topics than programming while designing a game. It is a critical gap that should be considered as a topic in future research: to see whether students can learn about other computer science topics during the game creation process (while they develop their programming skills).

figure 9

Distribution of the published articles according to the implemented pedagogical strategy

Computer science topics covered by game-based approach in computer science

Figure  10 gives insight into the distribution of the relevant articles concerning the computer science topic covered by the game-based approach. The topic that is mainly taught by a game-based approach at university is object-oriented programming. The situation is similar in secondary schools. Game-based approach is suitable classroom strategy for fostering higher order thinking skills, such as problem solving, group collaboration, and critical thinking, that are developed during learning object-oriented programming, which is consistent with previous research conducted by Chen et al. ( 2021 ).

figure 10

Distribution of the published articles concerning the covered computer science topics

This can be expected, because the topic is complex for the students, and teachers must find different approaches and strategies to make it more understandable. In addition, in those educational levels, there is a distribution of the articles in different mentioned computer science topics (although it is not equally distributed).

However, if we analyze the topics covered by the game-based approach in primary education, it can be noticed that this approach is implemented in several topics only, mainly connected with the development of students’ computational thinking skills and fundaments of programming languages (see Table 3 for detailed overview). This trend continues in the recent years (Cheng et al., 2023 ; Mozelius & Humble, 2023 ).

Students in primary education mostly learn block-based programming languages, so it is expected that this will be the most frequent topic covered by the game-based approach. However, some articles also refer to object-oriented programming taught in upper grades. The interesting finding is that there are no articles about using educational games to learn other computer science topics, such as hardware, some applications, networks, and cybersecurity, in primary education, as there are in other educational levels. For example, there are two articles that elaborate on learning about internet safety using games in secondary education (Berger et al., 2019 ; Prabawa et al., 2017 ), and no article on game-based learning for internet safety in primary education. This lack of research articles concerning using the game-based approach for learning other topics in computer science in primary education can help identify potential future research topics.

Potential research topics concerning the game-based approach in computer science

While the lack of research articles concerning using the game-based approach for learning other topics in computer science in primary education is a good starting point for identifying potential future research topics, it is important to consider it in combination with practical constraints such are lack of knowledge, access to technology or teacher training on a specific subject. In that context, “Identifying the challenges, opportunities and solutions for integrating game-based learning methods in primary schools for specific computer science topics” can be a future research topic. It should be noted, that although some articles on specific topics can be found in the recent literature (Alam, 2022 ), there is a huge pool of topics, such are internet safety and digital citizenship that can be explored in this context.

There is an evident lack of articles on the use of game-based learning in primary and secondary schools. The findings in the existing literature that elaborate on how specific game design elements influence the learning process are minimal (Baek & Oh, 2019 ; Dos Santos et al., 2019 ; Emembolu et al., 2019 ; Kanellopoulou et al., 2021 ). These findings, combined with the finding of a limited number of articles that use existing games in the process of learning, define the potential future research topic "Assessing the role of game design elements in enhancing engagement and understanding of computer science concepts among primary and/or secondary school students". This research topic can use conceptual framework that investigates how specific elements of game design can contribute to increased engagement and improved understanding of computer science concepts in primary or/and education.

This research topic includes various specific research questions and theoretical frameworks. One possible set of research questions can investigate the specific elements of game design that can be incorporated into educational games or learning activities to enhance the learning experience. These elements may include interactive interfaces, engaging narratives, immersive environments, feedback mechanisms, competition or collaboration features, levels of difficulty, rewards, and progression systems. Different theories such are social cognitive theory (Lim et al., 2020 ) and self-determination theory (Ryan et al., 2006 ) can be used to better understand the motivational factors of different game design elements (interactivity, challenges, and rewards), and how they influence student engagement and sustain student interest and active participation in computer science learning.

All mentioned research questions can be investigated by conducting experiments, surveys, observations, or interviews to gather quantitative and qualitative data on student experiences and perceptions. Combined with data from learning outcomes, these potential findings can provide the information about overall effectiveness of using the elements of a game-based approach to learning computer science in primary schools.

Limitations

This scoping review focuses on the articles in four digital libraries, potentially leaving a significant number of articles out of the analyzing process.

Using the NLP toolkit automates searching for relevant articles. Undoubtedly, a human reader might better understand the context and better assess the relevance of an article and potentially include some articles that NLP toolkit classified as irrelevant. In addition, after the initial selection by NLP toolkit, we performed the quality assessment of the identified articles, for each of the research questions. In that way, we ensured that only relevant articles are included in the study, but it might happen that, due to the phase of selection some relevant articles were omitted from the study.

Detailed meta-analyses within the selected group of articles concerning a particular research feature can further contribute to the existing body of knowledge. Similar analyses exist, but not on learning computer science (Gui et al., 2023 ). For example, in our manuscript, we did not consider the size of the student population, existence of the control group of students, or replicability of the studies.

This scoping review discusses implementation of game-based approach in computer science by analyzing research articles in four digital libraries published between 2017 and 2021. In total, 113 research articles were analyzed concerning the educational level, where the game-based approach is implemented, the type of the game, covered computer science topic, pedagogical strategy and purpose of the implementation. The results show that the number of research articles is increasing through the years, confirming the importance of implementing a game-based approach in computer science. Most of these articles refer to the research in just one country, in the local context, making it difficult to generalize the research outcomes and conclusions on the international level.

The article presents various games using various technologies concerning several computer science topics. However, there is no standardized game or methodology that can be used for designing an educational game. Implemented game in each of the researched articles depends on the educational level, covered topic and game type. From our findings, it is evident that most articles refer to the implementation of the game-based approach, where students gather the necessary knowledge and skills while playing a game. Just a few of them incorporate the process of learning by designing educational games, and this learning is connected to developing computational thinking or programming skills.

Potential future research might be focused on identifying the challenges, opportunities, and solutions for integrating game-based learning methods for a specific computer science topic. Example topics might be internet safety and digital citizenship.

The lack of research articles on game-based learning in primary and secondary schools, along with limited findings on the influence of game design elements, highlights the need to assess how different elements enhance engagement and understanding of computer science concepts.

Availability of data and materials

All data generated and analyzed during this study are included in this article.

https://scratch.mit.edu/

https://snap.berkeley.edu/

https://blockly.games/

https://codecombat.com/

https://www.alice.org/

https://greenfoot.org/door

Abbasi, S., Kazi, H., & Khowaja, K. (2017). A systematic review of learning object-oriented programming through serious games and programming approaches. In 2017 4th IEEE International Conference on Engineering Technologies and Applied Sciences (ICETAS) (pp. 1–6). IEEE. https://doi.org/10.1109/ICETAS.2017.8277894

Abdellatif, A. J., McCollum, B., & McMullan, P. (2018). Serious games quality characteristics evaluation: The case study of optimizing Robocode. In 2018 International Symposium on Computers in Education (SIIE) (pp. 1–4). IEEE. https://doi.org/10.1109/SIIE.2018.8586730

Abidin, H. Z., & Kamaru Zaman, F. H. (2017). Students’ perceptions on game-based classroom response system in a computer programming course. In 2017 IEEE 9th International Conference on Engineering Education (ICEED) (pp. 254–259). IEEE. https://doi.org/10.1109/ICEED.2017.8251203

Agalbato, F., & Loiacono, D. (2018). Robo 3 : A puzzle game to learn coding. In 2018 IEEE Games, Entertainment, Media Conference (GEM) (pp. 359–366). IEEE. https://doi.org/10.1109/GEM.2018.8516515

Agbo, F. J., Oyelere, S. S., Suhonen, J., & Laine, T. H. (2021). Co-design of mini games for learning computational thinking in an online environment. Education and Information Technologies, 26 (5), 5815–5849. https://doi.org/10.1007/s10639-021-10515-1

Article   Google Scholar  

Alam, A. (2022). A digital game-based learning approach for effective curriculum transaction for teaching-learning of artificial intelligence and machine learning. In  2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS)  (pp. 69–74). IEEE. https://doi.org/10.1109/icscds53736.2022.9760932

Alatrista-Salas, H., & Nunez-Del-Prado, M. (2018). Teaching software engineering through computer games. In 2018 IEEE World Engineering Education Conference (EDUNINE) (pp. 1–4). IEEE. https://doi.org/10.1109/EDUNINE.2018.8450996

Anastasiadis, T., Lampropoulos, G., & Siakas, K. (2018). Digital game-based learning and serious games in education. International Journal of Advances in Scientific Research and Engineering., 4 (12), 139–144. https://doi.org/10.31695/IJASRE.2018.33016

Araujo, L. G. J., Bittencourt, R. A., & Santos, D. M. B. (2018). Contextualized spiral learning of computer programming in Brazilian vocational secondary education. In 2018 IEEE Frontiers in Education Conference (FIE) (pp. 1–9). IEEE. https://doi.org/10.1109/FIE.2018.8658456

Arcagök, S. (2021). The impact of game-based teaching practices in different curricula on academic achievement. International Online Journal of Education and Teaching, 8 (2), 778–796.

Google Scholar  

Arksey, H., & O'Malley, L. (2005). Scoping studies: towards a methodological framework. International journal of social research methodology , 8 (1), 19–32. https://doi.org/10.1080/1364557032000119616 .

Baek, J., & Oh, G. (2019). Development of a puzzle game to learn coding for elementary students. In C. Stephanidis (Ed.), HCI International 2019 – Late Breaking Papers (pp. 267–279). Springer International Publishing. https://doi.org/10.1007/978-3-030-30033-3_21

Barradas, R., Lencastre, J., Soares, S., & Valente, A. (2020). Developing computational thinking in early ages: A review of the code.org platform. In Proceedings of the 12th International Conference on Computer Supported Education (CSEDU2020) (pp. 157–168). SCITEPRESS – Science and Technology Publications https://doi.org/10.5220/0009576801570168

Barriga, N. A., & Besoain, F. (2020). Artificial intelligence and mobile programming courses for a video game development program in Chile. Computing in Science & Engineering, 22 (4), 17–25. https://doi.org/10.1109/MCSE.2020.2986758

Barz, N., Benick, M., Dörrenbächer-Ulrich, L., & Perels, F. (2023). The effect of digital game-based learning interventions on cognitive, metacognitive, and affective-motivational learning outcomes in school: A meta-analysis. Review of Educational Research . https://doi.org/10.3102/00346543231167795

Bellas, F., Naya, M., Varela, G., Llamas, L., Prieto, A., Becerra, J. C., Bautista, M., Faiña, A., & Duro, R. (2018). The Robobo project: Bringing educational robotics closer to real-world applications. In W. Lepuschitz, M. Merdan, G. Koppensteiner, R. Balogh, & D. Obdržálek (Eds.), Robotics in education: Latest results and developments (pp. 226–237). Springer. https://doi.org/10.1007/978-3-319-62875-2_20

Chapter   Google Scholar  

Berger, E., Sæthre, T. H., & Divitini, M. (2019). PrivaCity: A chatbot game to raise privacy awareness among teenagers. In S. N. Pozdniakov & V. Dagienė (Eds.), Informatics in schools. New ideas in school informatics (pp. 293–304). Springer. https://doi.org/10.1007/978-3-030-33759-9_23

Bers, M. U. (2019). Coding as another language: A pedagogical approach for teaching computer science in early childhood. Journal of Computers in Education, 6 (4), 499–528. https://doi.org/10.1007/s40692-019-00147-3

Bevcic, M., & Rugelj, J. (2020). Game design-based learning of programming for girls. In 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO) (pp. 576–580). IEEE. https://doi.org/10.23919/MIPRO48935.2020.9245175

Bird, S. (2006). NLTK: the natural language toolkit. In  Proceedings of the COLING/ACL 2006 Interactive Presentation Sessions  (pp. 69–72). https://doi.org/10.3115/1225403.1225421

Borna, K., & Rad, H. M. (2018). Serious games in computer science learning goals. In 2018 2nd National and 1st International Digital Games Research Conference: Trends, Technologies, and Applications (DGRC) (pp. 161–166). IEEE. https://doi.org/10.1109/DGRC.2018.8712030

Boyer, S. L., Edmondson, D. R., Artis, A. B., & Fleming, D. (2014). Self-directed learning: A tool for lifelong learning. Journal of Marketing Education, 36 (1), 20–32. https://doi.org/10.1177/0273475313494010

Boyle, E. A., Hainey, T., Connolly, T. M., Gray, G., Earp, J., Ott, M., Lim, T., Ninaus, M., Ribeiro, C., & Pereira, J. (2016). An update to the systematic literature review of empirical evidence of the impacts and outcomes of computer games and serious games. Computers & Education, 94 , 178–192. https://doi.org/10.1016/j.compedu.2015.11.003

Calvo-Morata, A., Alonso-Fernández, C., Freire, M., Martínez-Ortiz, I., & Fernández-Manjón, B. (2020). Serious games to prevent and detect bullying and cyberbullying: A systematic serious games and literature review. Computers & Education, 157 , 103958. https://doi.org/10.1016/j.compedu.2020.103958

Campbell, L. (2020). Teaching in an inspiring learning space: An investigation of the extent to which one school’s innovative learning environment has impacted on teachers’ pedagogy and practice. Research Papers in Education, 35 (2), 185–204. https://doi.org/10.1080/02671522.2019.1568526

Cardinot, A., & Fairfield, J. A. (2019). Game-based learning to engage students with physics and astronomy using a board game. International Journal of Game-Based Learning, 9 (1), 42–57. https://doi.org/10.4018/IJGBL.2019010104

Chandel, P., Dutta, D., Tekta, P., Dutta, K., & Gupta, V. (2015). Digital game-based learning in computer science education. CPUH-Research Journal, 1 (2), 33–37.

Chang, C. S., Chung, C. H., & Chang, J. A. (2020). Influence of problem-based learning games on effective computer programming learning in higher education. Educational Technology Research and Development, 68 , 2615–2634. https://doi.org/10.1007/s11423-020-09784-3

Chang, C. K., & Tsai, Y. T. (2018). Pair-programming curriculum development of motion-based game for enhancing computational thinking skills. In  2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI)  (pp. 284–287). IEEE. https://doi.org/10.1109/IIAI-AAI.2018.00061

Chen, P. Y., Hwang, G. J., Yeh, S. Y., Chen, Y. T., Chen, T. W., & Chien, C. H. (2021). Three decades of game-based learning in science and mathematics education: An integrated bibliometric analysis and systematic review. Journal of Computers in Education, 9 (3), 455–476. https://doi.org/10.1007/s40692-021-00210-y

Chen, P., Yang, D., Metwally, A. H. S., Lavonen, J., & Wang, X. (2023). Fostering computational thinking through unplugged activities: A systematic literature review and meta-analysis. International Journal of STEM Education, 10 (1), 1–25. https://doi.org/10.1186/s40594-023-00434-7

Cheng, Y. P., Lai, C. F., Chen, Y. T., Wang, W. S., Huang, Y. M., & Wu, T. T. (2023). Enhancing student’s computational thinking skills with student-generated questions strategy in a game-based learning platform. Computers & Education, 200 , 104794. https://doi.org/10.1016/j.compedu.2023.104794

Clark, D. B., Tanner-Smith, E. E., & Killingsworth, S. S. (2016). Digital games, design, and learning: A systematic review and meta-analysis. Review of Educational Research, 86 , 79–122. https://doi.org/10.3102/0034654315582065

Clegg, B. S., Rojas, J. M., & Fraser, G. (2017). Teaching software testing concepts using a mutation testing game. In 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering Education and Training Track (ICSE-SEET) (pp. 33–36). IEEE. https://doi.org/10.1109/ICSE-SEET.2017.1

Corda, F., Onnis, M., Pes, M., Spano, L. D., & Scateni, R. (2019). BashDungeon: Learning UNIX with a video-game. Multimedia Tools and Applications, 78 (10), 13731–13746. https://doi.org/10.1007/s11042-019-7230-3

Daungcharone, K., Panjaburee, P., & Thongkoo, K. (2017). Using digital game as compiler to motivate C programming language learning in higher education. In 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 533–538). IEEE. https://doi.org/10.1109/IIAI-AAI.2017.77

De Carvalho, C. V., Cerar, Š, Rugelj, J., Tsalapatas, H., & Heidmann, O. (2020). Addressing the gender gap in computer programming through the design and development of serious games. IEEE Revista Iberoamericana De Tecnologias Del Aprendizaje, 15 (3), 242–251. https://doi.org/10.1109/RITA.2020.3008127

De Kereki, I. F., & Adorjan, A. (2018). Serious games: Using abstract strategy games in computer science 2: An experience report and lessons learned. In 2018 IEEE Global Engineering Education Conference (EDUCON) (pp. 169–174). IEEE. https://doi.org/10.1109/EDUCON.2018.8363224

De Troyer, O., Lindberg, R., Maushagen, J., & Sajjadi, P. (2019). Development and evaluation of an educational game to practice the truth tables of logic. In 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT) (pp. 92–96). IEEE. https://doi.org/10.1109/ICALT.2019.00032

Denner, J., Werner, L., & Ortiz, E. (2012). Computer games created by middle school girls: Can they be used to measure understanding of computer science concepts? Computers & Education, 58 (1), 240–249. https://doi.org/10.1016/j.compedu.2011.08.006

Díaz, J., López, J. A., Sepúlveda, S., Ramírez Villegas, G. M., Ahumada, D., & Moreira, F. (2021). Evaluating aspects of usability in video game-based programming learning platforms. Procedia Computer Science, 181 , 247–254. https://doi.org/10.1016/j.procs.2021.01.141

Dočkalová Burská, K., Rusňák, V., & Ošlejšek, R. (2022). Data-driven insight into the puzzle-based cybersecurity training. Computers & Graphics, 102 , 441–451. https://doi.org/10.1016/j.cag.2021.09.011

Dos Santos, A. L., Souza, M. R. D. A., Dayrell, M., & Figueiredo, E. (2018). Exploring game elements in learning programming: An empirical evaluation. In 2018 IEEE Frontiers in Education Conference (FIE) (pp. 1–9). IEEE. https://doi.org/10.1109/FIE.2018.8658505

Dos Santos, A. L., Souza, M. R. D. A., Dayrell, M., & Figueiredo, E. (2019). A systematic mapping study on game elements and serious games for learning programming. In B. M. McLaren, R. Reilly, S. Zvacek, & J. Uhomoibhi (Eds.), Computer supported education (Vol. 1022, pp. 328–356). Springer. https://doi.org/10.1007/978-3-030-21151-6_17

Duch, P., & Jaworski, T. (2018). Enriching computer science programming classes with Arduino game development. In 2018 11th International Conference on Human System Interaction (HIS) (pp. 148–154). IEEE. https://doi.org/10.1109/HSI.2018.8430994

Eleftheriadis, S., & Xinogalos, S. (2020). Office Madness: Design and pilot evaluation of a serious game for learning the C++ programming language. In I. Marfisi-Schottman, F. Bellotti, L. Hamon, & R. Klemke (Eds.), Games and learning alliance (pp. 389–394). Springer. https://doi.org/10.1007/978-3-030-63464-3_36

Elmunsyah, H., Kusumo, G. R., Pujianto, U., & Prasetya, D. D. (2018). Development of mobile based educational game as a learning media for basic programming in VHS. In 2018 5th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) (pp. 416–420). IEEE. https://doi.org/10.1109/EECSI.2018.8752658

Elmunsyah, H., Herwanto, H. W., Smaragdina, A. A., Anggraini, N. S., & Utomo, W. M. (2021). DEGRAF educational game as a supplement for basic graphic design subjects for vocational high school students. In 2021 7th International Conference on Electrical, Electronics and Information Engineering (ICEEIE) (pp. 128–132). IEEE. https://doi.org/10.1109/ICEEIE52663.2021.9616829

Emembolu, I., Strachan, R., Davenport, C., Dele-Ajayi, O., & Shimwell, J. (2019). Encouraging diversity in computer science among young people: Using a games design intervention based on an integrated pedagogical framework. In 2019 IEEE Frontiers in Education Conference (FIE) (pp. 1–8). IEEE. https://doi.org/10.1109/FIE43999.2019.9028436

Evripidou, S., Amanatiadis, A., Christodoulou, K., & Chatzichristofis, S. A. (2021). Introducing algorithmic thinking and sequencing using tangible robots. IEEE Transactions on Learning Technologies, 14 (1), 93–105. https://doi.org/10.1109/TLT.2021.3058060

Fagerlund, J., Häkkinen, P., Vesisenaho, M., & Viiri, J. (2021). Computational thinking in programming with Scratch in primary schools: A systematic review. Computer Applications in Engineering Education, 29 (1), 12–28. https://doi.org/10.1002/cae.22255

Fraser, G., Gambi, A., & Rojas, J. M. (2020). Teaching software testing with the Code Defenders testing game: Experiences and improvements. In 2020 IEEE International Conference on Software Testing, Verification and Validation Workshops (ICSTW) (pp. 461–464). IEEE. https://doi.org/10.1109/ICSTW50294.2020.00082

Funke, A., Geldreich, K., & Hubwieser, P. (2017). Analysis of Scratch projects of an introductory programming course for primary school students. In 2017 IEEE Global Engineering Education Conference (EDUCON) (pp. 1229–1236). IEEE. https://doi.org/10.1109/EDUCON.2017.7943005

Gabaruk, J., Logofatu, D., Groskreutz, D., & Andersson, C. (2019). On teaching Java and object oriented programming by using children board games. In 2019 IEEE Global Engineering Education Conference (EDUCON) (pp. 601–606). IEEE. https://doi.org/10.1109/EDUCON.2019.8725264

Garcia-Ruiz, M. A., Alvarez-Cardenas, O., & Iniguez-Carrillo, A. L. (2021). Experiences in developing and testing BBC Micro: Bit games in a K-12 Coding Club during the COVID-19 Pandemic. In 2021 IEEE/ACIS 20th International Fall Conference on Computer and Information Science (ICIS Fall) (pp. 161–164). IEEE. https://doi.org/10.1109/ICISFall51598.2021.9627364

Gardeli, A., & Vosinakis, S. (2019). ARQuest: A tangible augmented reality approach to developing computational thinking skills. In 2019 11th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games) (pp. 1–8). IEEE. https://doi.org/10.1109/VS-Games.2019.8864603

Ghergulescu, I., & Muntean, C. H., et al. (2012). Measurement and analysis of learner’s motivation in game-based e-learning. In D. Ifenthaler (Ed.), Assessment in game-based learning: Foundations, innovations, and perspectives (pp. 355–378). Cham: Springer. https://doi.org/10.1007/978-1-4614-3546-4_18

Giang, C., Chevalier, M., Negrini, L., Peleg, R., Bonnet, E., Piatti, A., & Mondada, F. (2020). Exploring Escape games as a teaching tool in educational robotics. In M. Moro, D. Alimisis, & L. Iocchi (Eds.), Educational robotics in the context of the maker movement (pp. 95–106). Springer. https://doi.org/10.1007/978-3-030-18141-3_8

Gossen, F., Kuhn, D., Margaria, T., & Lamprecht, A. (2018). Computational thinking: Learning by doing with the Cinco adventure game tool. In 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC) (pp. 990–999). IEEE. https://doi.org/10.1109/COMPSAC.2018.00175

Groza, A., Baltatescu, M. M., & Pomarlan, M. (2020). MineFOL: A game for learning first order logic. In 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing (ICCP) (pp. 153–160). IEEE. https://doi.org/10.1109/ICCP51029.2020.9266174

Gui, Y., Cai, Z., Yang, Y., Kong, L., Fan, X., & Tai, R. H. (2023). Effectiveness of digital educational game and game design in STEM learning: A meta-analytic review. International Journal of STEM Education, 10 (1), 1–25. https://doi.org/10.1186/s40594-023-00424-9

Gulec, U., Yilmaz, M., Yalcin, A. D., O’Connor, R. V., & Clarke, P. M. (2019). CENGO: A web-based serious game to increase the programming knowledge levels of computer engineering students. In A. Walker, R. V. O’Connor, & R. Messnarz (Eds.), Systems, software and services process improvement (pp. 237–248). Springer. https://doi.org/10.1007/978-3-030-28005-5_18

Hafeez, M. (2022). Effects of game-based learning in comparison to traditional learning to provide an effective learning environment: A comparative review. Contemporary Educational Researches Journal, 12 (2), 89–105. https://doi.org/10.18844/cerj.v12i2.6374

Hamari, J., Shernoff, D. J., Rowe, E., Coller, B., Asbell-Clarke, J., & Edwards, T. (2016). Challenging games help students learn: An empirical study on engagement, flow and immersion in game-based learning. Computers in Human Behavior, 54 , 170–179. https://doi.org/10.1016/j.chb.2015.07.045

Hananto, A. A. F., & Panjaburee, P. (2019). Proposing an online peer-feedback approach in digital game from a semi-puzzle game-based learning perspective. In 2019 8th International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 254–259). IEEE. https://doi.org/10.1109/IIAI-AAI.2019.00058

Harteveld, C., Smith, G., Carmichael, G., Gee, E., & Stewart-Gardiner, C. (2014). A design-focused analysis of games teaching computer science. Proceedings of Games+ Learning_ Society, 10 , 1–8.

Hartt, M., Hosseini, H., & Mostafapour, M. (2020). Game on: Exploring the effectiveness of game-based learning. Planning Practice & Research, 35 (5), 589–604. https://doi.org/10.1080/02697459.2020.1778859

Hazzan, O., Ragonis, N., & Lapidot, T. (2020). Teaching methods in computer science education. In O. Hazzan, N. Ragonis, & T. Lapidot (Eds.), Guide to teaching computer science: An activity-based approach (pp. 181–220). Springer. https://doi.org/10.1007/978-3-030-39360-1_10

Hirsh-Pasek, K., Hadani, H. S., Blinkoff, E., & Golinkoff, R. M. (2020). A new path to education reform: playful learning promotes 21st century skills in school and beyond.  Policy Brief . https://www.brookings.edu/wp-content/uploads/2020/10/Big-Ideas_Hirsh-Pasek_PlayfulLearning.pdf

Holanda, M., Araujo, A. P. F., & Walter, M. E. (2020). Meninas.comp project: Programming for girls in high school in Brazil. In 2020 Research on Equity and Sustained Participation in Engineering, Computing, and Technology (RESPECT) (pp. 1–2). IEEE. https://doi.org/10.1109/RESPECT49803.2020.9272419

Holenko Dlab, M., & Hoic-Bozic, N. (2021). Effectiveness of game development-based learning for acquiring programming skills in lower secondary education in Croatia. Education and Information Technologies, 26 (4), 4433–4456. https://doi.org/10.1007/s10639-021-10471-w

Hong, T. Y., & Chu, H. C. (2017). Effects of a situated 3D computational problem-solving and programming game-based learning model on students’ learning perception and cognitive loads. In 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 596–600). IEEE https://doi.org/10.1109/IIAI-AAI.2017.96

Hooshyar, D., Pedaste, M., Yang, Y., Malva, L., Hwang, G.-J., Wang, M., Lim, H., & Delev, D. (2021). From gaming to computational thinking: An adaptive educational computer game-based learning approach. Journal of Educational Computing Research, 59 (3), 383–409. https://doi.org/10.1177/0735633120965919

Horst, R., Naraghi-Taghi-Off, R., Diez, S., Uhmann, T., Müller, A., & Dörner, R. (2019). FunPlogs – a serious puzzle mini-game for learning fundamental programming principles using visual scripting. In G. Bebis, R. Boyle, B. Parvin, D. Koracin, D. Ushizima, S. Chai, S. Sueda, X. Lin, A. Lu, D. Thalmann, C. Wang, & P. Xu (Eds.), Advances in Visual Computing (pp. 494–504). Springer International Publishing. https://doi.org/10.1007/978-3-030-33720-9_38

Huang, L. W., Chen, L. W., & Cheng, P. H. (2019). Board game design for Python programming education. In 2019 IEEE International Conference on Engineering, Technology and Education (TALE) (pp. 1–6). IEEE. https://doi.org/10.1109/TALE48000.2019.9225988

Huang, L. W., Cheng, P. H., & Chen, L. W. (2021). Web-based board game for learning Python. In 2021 IEEE World Conference on Engineering Education (EDUNINE) (pp. 1–6). IEEE. https://doi.org/10.1109/EDUNINE51952.2021.9429144

Huizenga, J., Admiraal, W., Akkerman, S., & Dam, G. T. (2009). Mobile game-based learning in secondary education: Engagement motivation and learning in a mobile city game. Journal of Computer Assisted Learning., 25 (4), 332–344. https://doi.org/10.1111/j.1365-2729.2009.00316.x

Hussein, M. H., Ow, S. H., Cheong, L. S., & Thong, M.-K. (2019). A digital game-based learning method to improve students’ critical thinking skills in elementary science. IEEE Access, 7 , 96309–96318. https://doi.org/10.1109/ACCESS.2019.2929089

Hwang, G. J., Hung, C. M., & Chen, N. S. (2014). Improving learning achievements, motivations and problem-solving skills through a peer assessment-based game development approach. Educational Technology Research and Development, 62 (2), 129–145. https://doi.org/10.1007/s11423-013-9320-7

Jagust, T., Krzic, A. S., Gledec, G., Grgic, M., & Bojic, I. (2018). Exploring different unplugged game-like activities for teaching computational thinking. In 2018 IEEE Frontiers in Education Conference (FIE) (pp. 1–5). IEEE. https://doi.org/10.1109/FIE.2018.8659077

Joshi, D. R., Adhikari, K. P., Khanal, B., Khadka, J., & Belbase, S. (2022). Behavioral, cognitive, emotional and social engagement in mathematics learning during COVID-19 pandemic. PLoS ONE, 17 (11), e0278052. https://doi.org/10.1371/journal.pone.0278052

Jovanov, M., Ilijoski, B., Stankov, E., & Armenski, G. (2017). Creation of educational games—project based learning in e-learning systems course. In 2017 IEEE Global Engineering Education Conference (EDUCON) (pp. 1274–1281). IEEE. https://doi.org/10.1109/EDUCON.2017.7943012

Kaldarova, B., Omarov, B., Zhaidakbayeva, L., Tursynbayev, A., Beissenova, G., Kurmanbayev, B., & Anarbayev, A. (2023). Applying game-based learning to a primary school class in computer science terminology learning. Frontiers in Education . https://doi.org/10.3389/feduc.2023.1100275

Kanellopoulou, I., Garaizar, P., & Guenaga, M. (2021). First steps towards automatically defining the difficulty of maze-based programming challenges. IEEE Access, 9 , 64211–64223. https://doi.org/10.1109/ACCESS.2021.3075027

Kannappan, V. T., Fernando, O. N. N., Chattopadhyay, A., Tan, X., Hong, J. Y. J., Seah, H. S., & Lye, H. E. (2019). La Petite Fee Cosmo: Learning data structures through game-based learning. In 2019 International Conference on Cyberworlds (CW) (pp. 207–210). IEEE. https://doi.org/10.1109/CW.2019.00041

Kantharaju, P., Alderfer, K., Zhu, J., Char, B., Smith, B., & Ontanon, S. (2020). Modeling player knowledge in a parallel programming educational game. IEEE Transactions on Games, 14 (1), 64–75. https://doi.org/10.1109/TG.2020.3037505

Karagiannis, S., Papaioannou, T., Magkos, E., & Tsohou, A. (2020). Game-based information security/privacy education and awareness: Theory and practice. In M. Themistocleous, M. Papadaki, & M. M. Kamal (Eds.), Information Systems (Vol. 402, pp. 509–525). Cham: Springer. https://doi.org/10.1007/978-3-030-63396-7_34

Karram, O. (2021). The role of computer games in teaching object-oriented programming in high schools—Code Combat as a game approach. WSEAS Transactions on Advances in Engineering Education, 18 , 37–46. https://doi.org/10.37394/232010.2021.18.4

Kazimoglu, C. (2020). Enhancing confidence in using computational thinking skills via playing a serious game: A case study to increase motivation in learning computer programming. IEEE Access, 8 , 221831–221851. https://doi.org/10.1109/ACCESS.2020.3043278

Kintsakis, D., & Rangoussi, M. (2017). An early introduction to STEM education: Teaching computer programming principles to 5 th graders through an e-learning platform: A game-based approach. In 2017 IEEE Global Engineering Education Conference (EDUCON) (pp. 17–23). IEEE. https://doi.org/10.1109/EDUCON.2017.7942816

Klimová, N., Šajben, J., & Lovászová, G. (2021). Online game-based learning through Minecraft: Education edition programming contest. In 2021 IEEE Global Engineering Education Conference (EDUCON) (pp. 1660–1668). IEEE. https://doi.org/10.1109/EDUCON46332.2021.9453953

Kucera, E., Haffner, O., & Leskovsky, R. (2020). Multimedia application for object-oriented programming education developed by Unity engine. In 2020 Cybernetics & Informatics (K&I) (pp. 1–8). IEEE. https://doi.org/10.1109/KI48306.2020.9039853

Kurniawati, A., Akbar, N. H., & Prasetyo, D. (2018). Visual learning on mobile phone for introduction basic programming in vocational high school. In 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM) (pp. 186–191). IEEE. https://doi.org/10.1109/CENIM.2018.8710873

Kusuma, G. P., Putera Suryapranata, L. K., Wigati, E. K., & Utomo, Y. (2021). Enhancing historical learning using role-playing game on mobile platform. Procedia Computer Science, 179 , 886–893. https://doi.org/10.1016/j.procs.2021.01.078

Lapek, J. (2018). Promoting 21st century skills in problem-based learning environments. CTETE-Research Monograph Series, 1 (1), 66–85. https://doi.org/10.21061/ctete-rms.v1.c.4

Laporte, L., & Zaman, B. (2018). A comparative analysis of programming games, looking through the lens of an instructional design model and a game attributes taxonomy. Entertainment Computing, 25 , 48–61. https://doi.org/10.1016/j.entcom.2017.12.005

Lee, S. M. (2019). Her Story or their own stories? Digital game-based learning, student creativity, and creative writing. ReCALL, 31 (3), 238–254. https://doi.org/10.1017/S0958344019000028

Li, F. Y., Hwang, G. J., Chen, P. Y., & Lin, Y. J. (2021). Effects of a concept mapping-based two-tier test strategy on students’ digital game-based learning performances and behavioral patterns. Computers & Education, 173 , 104293. https://doi.org/10.1016/j.compedu.2021.104293

Lim, J. S., Choe, M. J., Zhang, J., & Noh, G. Y. (2020). The role of wishful identification, emotional engagement, and parasocial relationships in repeated viewing of live-streaming games: A social cognitive theory perspective. Computers in Human Behavior, 108 , 106327. https://doi.org/10.1016/j.chb.2020.106327

Lindberg, R. S., Laine, T. H., & Haaranen, L. (2019). Gamifying programming education in K-12: A review of programming curricula in seven countries and programming games. British Journal of Educational Technology, 50 (4), 1979–1995. https://doi.org/10.1111/bjet.12685

Liu, Z. Y., Shaikh, Z., & Gazizova, F. (2020). Using the concept of game-based learning in education. International Journal of Emerging Technologies in Learning (iJET), 15 (14), 53–64. https://doi.org/10.3991/ijet.v15i14.14675

Lopez-Fernandez, D., Gordillo, A., Alarcon, P. P., & Tovar, E. (2021a). Comparing traditional teaching and game-based learning using teacher-authored games on computer science education. IEEE Transactions on Education, 64 (4), 367–373. https://doi.org/10.1109/TE.2021.3057849

Lopez-Fernandez, D., Gordillo, A., Ortega, F., Yague, A., & Tovar, E. (2021b). LEGO® serious play in software engineering education. IEEE Access, 9 , 103120–103131. https://doi.org/10.1109/ACCESS.2021.3095552

López-Pernas, S., Gordillo, A., Barra, E., & Quemada, J. (2019). Analyzing learning effectiveness and students’ perceptions of an educational Escape room in a programming course in higher education. IEEE Access, 7 , 184221–184234. https://doi.org/10.1109/ACCESS.2019.2960312

López-Pernas, S., Gordillo, A., Barra, E., & Quemada, J. (2021). Comparing face-to-face and remote educational Escape rooms for learning programming. IEEE Access, 9 , 59270–59285. https://doi.org/10.1109/ACCESS.2021.3073601

Lotfi, E., Othman, B. Y., & Mohammed, B. (2019). Towards a mobile serious game for learning object oriented programming paradigms. In M. BenAhmed, A. A. Boudhir, & A. Younes (Eds.), Innovations in smart cities applications Edition 2 (pp. 450–462). Springer. https://doi.org/10.1007/978-3-030-11196-0_38

Lymbery, J. (2012). The potential of a game-based learning approach to improve learner outcomes. Computers in New Zealand Schools, 24 (1), 21–39.

Malizia, A., Fogli, D., Danesi, F., Turchi, T., & Bell, D. (2017). TAPASPlay: A game-based learning approach to foster computation thinking skills. In 2017 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC) (pp. 345–346). IEEE. https://doi.org/10.1109/VLHCC.2017.8103502

Malliarakis, C., Satratzemi, M., & Xinogalos, S. (2014). Educational games for teaching computer programming. Research on e-Learning and ICT in Education Technological, Pedagogical and Instructional Perspectives. https://doi.org/10.1007/978-1-4614-6501-0_7

Manning, C., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S., & McClosky, D. (2014). The Stanford CoreNLP natural language processing toolkit. In Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations (pp. 55–60). https://doi.org/10.3115/v1/P14-5010

Martins, E. R., Geraldes, W. B., Afonseca, U. R., & Gouveia, L. M. B. (2019). Using Kahoot as a learning tool. In I. Ramos, R. Quaresma, P. Silva, & T. Oliveira (Eds.), Information systems for industry 4.0 (Vol. 31, pp. 161–169). Springer. https://doi.org/10.1007/978-3-030-14850-8_11

Mathew, R., Malik, S. I., & Tawafak, R. M. (2019). Teaching problem solving skills using an educational game in a computer programming course. Informatics in Education, 18 (2), 359–373. https://doi.org/10.15388/infedu.2019.17

Meftah, C., Retbi, A., Bennani, S., & Idrissi, M. K. (2019). Evaluation of user experience in the context of mobile serious game. In 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS) (pp. 1–5). IEEE. https://doi.org/10.1109/ISACS48493.2019.9068872

Mezentseva, L. V., Kolganov, S. V., Dvoryankin, O. A., & Tuganova, S. V. (2021). Game-driven learning in the digital age: A systematic review and meta-analysis. Turkish Journal of Computer and Mathematics Education (TURCOMAT)., 12 (10), 2244–2253. https://doi.org/10.17762/turcomat.v12i10.4747

Miljanovic, M. A., & Bradbury, J. S. (2020). GidgetML: An adaptive serious game for enhancing first year programming labs. In 2020 IEEE/ACM 42nd International Conference on Software Engineering: Software Engineering Education and Training (ICSE-SEET) (pp. 184–192). IEEE. https://doi.org/10.1145/3377814.3381716

Min, W., Mott, B., Park, K., Taylor, S., Akram, B., Wiebe, E., Boyer, K. E., & Lester, J. (2020). Promoting computer science learning with block-based programming and narrative-centered gameplay. In 2020 IEEE Conference on Games (CoG) (pp. 654–657). IEEE. https://doi.org/10.1109/CoG47356.2020.9231881

Montes, H., Hijon-Neira, R., Perez-Marin, D., & Montes, S. (2021). Using an online serious game to teach basic programming concepts and facilitate gameful experiences for high school students. IEEE Access, 9 , 12567–12578. https://doi.org/10.1109/ACCESS.2021.3049690

Mosquera, C. K., Steinmaurer, A., Eckhardt, C., & Guetl, C. (2020). Immersively learning object oriented programming concepts with sCool. In 2020 6th International Conference of the Immersive Learning Research Network (ILRN) (pp. 124–131). IEEE. https://doi.org/10.23919/iLRN47897.2020.9155144

Mozelius, P., & Humble, N. (2023). Design factors for an educational game where girls and boys play together to learn fundamental programming. In  International Conference on ArtsIT, Interactivity and Game Creation  (pp. 134–148). Springer, Cham. https://doi.org/10.1007/978-3-031-28993-4_10

Munn, Z., Peters, M. D. J., Stern, C., Tufanaru, C., McArthur, A., & Aromataris, E. (2018). Systematic review or scoping review? Guidance for authors when choosing between a systematic or scoping review approach. BMC Medical Research Methodology, 18 (1), 143. https://doi.org/10.1186/s12874-018-0611-x

Nche, O. M., Welter, J., Che, M., Kraemer, E. T., Sitaraman, M., & Zordan, V. B. (2019). CodeTracesure—combining gaming, CS concepts, and pedagogy. In 2019 Research on Equity and Sustained Participation in Engineering, Computing, and Technology (RESPECT) (pp. 1–2). IEEE. https://doi.org/10.1109/RESPECT46404.2019.8985865

Nche, O. M., Boulware, R., Che, S. M., Kraemer, E. T., Sitaraman, M., & Zordan, V. B. (2020). Basic code understanding challenges for elementary school children. In 2020 Research on Equity and Sustained Participation in Engineering, Computing, and Technology (RESPECT) (pp. 1–2). IEEE. https://doi.org/10.1109/RESPECT49803.2020.9272421

Noroozi, O., Dehghanzadeh, H., & Talaee, E. (2020). A systematic review on the impacts of game-based learning on argumentation skills. Entertainment Computing, 35 , 100369. https://doi.org/10.1016/j.entcom.2020.100369

Noval, B. A., Safrodin, M., & Hakkun, R. Y. (2019). Battlebot: Logic learning based on visual programming implementation in multiplayer game online. In 2019 International Electronics Symposium (IES) (pp. 138–142). IEEE. https://doi.org/10.1109/ELECSYM.2019.8901628

Paiva, J. C., Leal, J. P., & Queirós, R. (2020). Authoring game-based programming challenges to improve students’ motivation. In M. E. Auer & T. Tsiatsos (Eds.), The challenges of the digital transformation in education (Vol. 916, pp. 602–613). Springer. https://doi.org/10.1007/978-3-030-11932-4_57

Park, K., Mott, B., Min, W., Wiebe, E., Boyer, K. E., & Lester, J. (2020). Generating game levels to develop computer science competencies in game-based learning environments. In I. I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán (Eds.), Artificial Intelligence in Education (Vol. 12164, pp. 240–245). Cham: Springer. https://doi.org/10.1007/978-3-030-52240-7_44

Partovi, T., & Razavi, M. R. (2019). The effect of game-based learning on academic achievement motivation of elementary school students. Learning and Motivation, 68 , 101592. https://doi.org/10.1016/j.lmot.2019.101592

Pellas, N., & Mystakidis, S. (2020). A systematic review of research about game-based learning in virtual worlds. JUCS - Journal of Universal Computer Science, 26 (8), 1017–1042. https://doi.org/10.3897/jucs.2020.054

Peters, M. D. J., Marnie, C., Tricco, A. C., Pollock, D., Munn, Z., Alexander, L., McInerney, P., Godfrey, C. M., & Khalil, H. (2020). Updated methodological guidance for the conduct of scoping reviews. JBI Evidence Synthesis, 18 (10), 2119–2126. https://doi.org/10.11124/JBIES-20-00167

Pila, S., Aladé, F., Sheehan, K. J., Lauricella, A. R., & Wartella, E. A. (2019). Learning to code via tablet applications: An evaluation of Daisy the Dinosaur and Kodable as learning tools for young children. Computers & Education, 128 , 52–62. https://doi.org/10.1016/j.compedu.2018.09.006

Popovic, J., Korolija, N., Markovic, Z., & Bojic, D. (2017). Developing algorithmic skills of pupils in Serbian schools using code.org materials. In 2017 25th Telecommunication Forum (TELFOR) (pp. 1–4). IEEE. https://doi.org/10.1109/TELFOR.2017.8249483

Prabawa, H. W., Junaeti, E., & Permana, Y. (2017, October). Using capture the flag in classroom: Game-based implementation in network security learning. In  2017 3rd International Conference on Science in Information Technology (ICSITech)  (pp. 690–695). IEEE. https://doi.org/10.1109/icsitech.2017.8257201

Priyaadharshini, M., Dakshina, R., & Sandhya, S. (2020). Learning analytics: Game-based learning for programming course in higher education. Procedia Computer Science, 172 , 468–472. https://doi.org/10.1016/j.procs.2020.05.143

Qian, M., & Clark, K. R. (2016). Game-based Learning and 21st century skills: A review of recent research. Computers in Human Behavior, 63 , 50–58. https://doi.org/10.1016/j.chb.2016.05.023

Rajeev, S., & Sharma, S. (2018). Educational game-theme based instructional module for teaching introductory programming. In IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society (pp. 3039–3044). IEEE. https://doi.org/10.1109/IECON.2018.8592835

Riera, B., Philippot, A., & Annebicque, D. (2019). Teaching the first and only logic control course with HOME I/O and Scratch 2.0. IFAC-PapersOnLine, 52 (9), 109–114. https://doi.org/10.1016/j.ifacol.2019.08.133

Roodt, S., & Ryklief, Y. (2022). Using digital game-based learning to improve the academic efficiency of vocational education students. In Research Anthology on Vocational Education and Preparing Future Workers (pp. 643–671). IGI Global. https://doi.org/10.4018/978-1-6684-5696-5.ch037

Roussou, E., & Rangoussi, M. (2020). On the use of robotics for the development of computational thinking in kindergarten: Educational intervention and evaluation. In M. Merdan, W. Lepuschitz, G. Koppensteiner, R. Balogh, & D. Obdržálek (Eds.), Robotics in Education (pp. 31–44). Springer. https://doi.org/10.1007/978-3-030-26945-6_3

Rozali, N. F., & Zaid, N. M. (2017). Code puzzle: ActionScript 2.0 learning application based on problem-based learning approach. In 2017 6th ICT International Student Project Conference (ICT-ISPC) (pp. 1–4). IEEE. https://doi.org/10.1109/ICT-ISPC.2017.8075329

Ryan, R. M., Rigby, C. S., & Przybylski, A. (2006). The motivational pull of video games: A self-determination theory approach. Motivation and Emotion, 30 , 344–360. https://doi.org/10.1007/s11031-006-9051-8

Sáiz Manzanares, M. C., Rodríguez Arribas, S., Pardo Aguilar, C., & Queiruga Dios, M. A. (2020). Effectiveness of self-regulation and serious games for learning STEM knowledge in primary education. Psicothema, 32 (4), 516–524. https://doi.org/10.7334/psicothema2020.30

Sánchez Mena, A., & Martí Parreño, J. (2017). Teachers´ acceptance of educational video games: A comprehensive literature review. Journal of E-Learning and Knowledge Society, 13 (2), 47–63. https://doi.org/10.20368/1971-8829/1319

Schatten, M., & Schatten, M. (2020). A comparative study of gamification in progamming education in a Croatian high school. In 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO) (pp. 700–704). IEEE. https://doi.org/10.23919/MIPRO48935.2020.9245237

Scherer, R., Siddiq, F., & Viveros, B. S. (2020). A meta-analysis of teaching and learning computer programming: Effective instructional approaches and conditions. Computers in Human Behavior, 109 , 106349. https://doi.org/10.1016/j.chb.2020.106349

Seebauer, S., Jahn, S., & Mottok, J. (2020). Learning from Escape rooms? A study design concept measuring the effect of a cryptography educational Escape room. In 2020 IEEE Global Engineering Education Conference (EDUCON) (pp. 1684–1685). IEEE. https://doi.org/10.1109/EDUCON45650.2020.9125333

Seralidou, E., & Douligeris, C. (2020). Creating and using digital games for learning in elementary and secondary education. In 2020 5th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM) (pp. 1–8). IEEE. https://doi.org/10.1109/SEEDA-CECNSM49515.2020.9221799

Serrano, K. (2019). The effect of digital game-based learning on student learning: A literature review. Graduate Research Papers , 943. https://scholarworks.uni.edu/grp/943

Shabalina, O., Malliarakis, C., Tomos, F., & Mozelius, P. (2017). Game-based learning for learning to program: from learning through play to learning through game development. In  11th European Conference on Games Based Learning 2017, Graz, Austria, 5–6 October 2017  (Vol. 11, pp. 571–576). Academic Conferences and Publishing International Limited.

Shahid, M., Wajid, A., Haq, K. U., Saleem, I., & Shujja, A. H. (2019). A Review of gamification for learning programming fundamental. In 2019 International Conference on Innovative Computing (ICIC) (pp. 1–8). IEEE. https://doi.org/10.1109/ICIC48496.2019.8966685

Sharaf, N., Ahmed, G., & Ihab, S. (2020). Virtual/mixed reality control of a game through Scratch. In 2020 24th International Conference Information Visualisation (IV) (pp. 689–693). IEEE. https://doi.org/10.1109/IV51561.2020.00119

Sharma, K., Papavlasopoulou, S., & Giannakos, M. (2019). Coding games and robots to enhance computational thinking: How collaboration and engagement moderate children’s attitudes? International Journal of Child-Computer Interaction, 21 , 65–76. https://doi.org/10.1016/j.ijcci.2019.04.004

Sharma, K., Torrado, J. C., Gómez, J., & Jaccheri, L. (2021). Improving girls’ perception of computer science as a viable career option through game playing and design: Lessons from a systematic literature review. Entertainment Computing, 36 , 100387. https://doi.org/10.1016/j.entcom.2020.100387

Shim, J., Kwon, D., & Lee, W. (2017). The effects of a robot game environment on computer programming education for elementary school students. IEEE Transactions on Education, 60 (2), 164–172. https://doi.org/10.1109/TE.2016.2622227

Siakavaras, I., Papastergiou, M., & Comoutos, N. (2018). Mobile games in computer science education: Current state and proposal of a mobile game design that incorporates physical activity. In T. A. Mikropoulos (Ed.), Research on e-Learning and ICT in Education (pp. 243–255). Springer. https://doi.org/10.1007/978-3-319-95059-4_15

Silva, J. P., Silveira, I. F., Kamimura, L., & Barboza, A. T. (2020). Turing project: An open educational game to teach and learn programming logic. In 2020 15th Iberian Conference on Information Systems and Technologies (CISTI) (pp. 1–6). IEEE. https://doi.org/10.23919/CISTI49556.2020.9141122

Simões Gomes, T. C., Pontual Falcão, T., de Azevedo, C., & Restelli Tedesco, P. (2018). Exploring an approach based on digital games for teaching programming concepts to young children. International Journal of Child-Computer Interaction, 16 , 77–84. https://doi.org/10.1016/j.ijcci.2017.12.005

Sookhanaphibarn, K., & Choensawat, W. (2020). Educational games for cybersecurity awareness. In 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE) (pp. 424–428). IEEE. https://doi.org/10.1109/GCCE50665.2020.9291723

Stigall, J., & Sharma, S. (2017). Virtual reality instructional modules for introductory programming courses. In 2017 IEEE Integrated STEM Education Conference (ISEC) (pp. 34–42). IEEE. https://doi.org/10.1109/ISECon.2017.7910245

Sung, H. Y., & Hwang, G. J. (2013). A collaborative game-based learning approach to improving students’ learning performance in science courses. Computers & Education, 63 , 43–51. https://doi.org/10.1016/j.compedu.2012.11.019

Tabuti, L. M., de Azevedo da Rocha, R. L., & Nakamura, R. (2020). Proposal of method for converting a physical card game to digital for logical reasoning competencies on the data structure subject. In 2020 IEEE Frontiers in Education Conference (FIE) (pp. 1–9). IEEE. https://doi.org/10.1109/FIE44824.2020.9274001

Tacouri, H., & Nagowah, L. (2021). Code Saga – A mobile serious game for learning programming. In 2021 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS) (pp. 190–195). IEEE. https://doi.org/10.1109/IoTaIS53735.2021.9628484

Tang, T., Vezzani, V., & Eriksson, V. (2020). Developing critical thinking, collective creativity skills and problem solving through playful design jams. Thinking Skills and Creativity, 37 , 100696. https://doi.org/10.1016/j.tsc.2020.100696

Taylor, S., Min, W., Mott, B., Emerson, A., Smith, A., Wiebe, E., & Lester, J. (2019). Position: IntelliBlox: A toolkit for integrating block-based programming into game-based learning environments. In 2019 IEEE Blocks and Beyond Workshop (B&B) (pp. 55–58). IEEE. https://doi.org/10.1109/BB48857.2019.8941222

Tioh, J. N., Mina, M., & Jacobson, D. W. (2017). Cyber security training a survey of serious games in cyber security. In 2017 IEEE Frontiers in Education Conference (FIE) (pp. 1–5). IEEE. https://doi.org/10.1109/FIE.2017.8190712

Toh, W., & Kirschner, D. (2020). Self-directed learning in video games, affordances and pedagogical implications for teaching and learning. Computers & Education, 154 , 103912. https://doi.org/10.1016/j.compedu.2020.103912

Towler, A., Aranda, D., Ramyaa, R., & Kuo, R. (2020). Using educational game for engaging students in learning foundational concepts of propositional logic. In 2020 IEEE 20th International Conference on Advanced Learning Technologies (ICALT) (pp. 208–209). IEEE. https://doi.org/10.1109/ICALT49669.2020.00067

Tretinjak, M. F. (2019). Methodology for using games as an educational tool. In 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) (pp. 547–551). IEEE. https://doi.org/10.23919/MIPRO.2019.8757046

Tsur, M., & Rusk, N. (2018). Scratch microworlds: designing project-based introductions to coding. In Proceedings of the 49th ACM Technical Symposium on Computer Science Education (pp. 894–899). https://doi.org/10.1145/3159450.3159559

Turan, Z., Avinc, Z., Kara, K., & Goktas, Y. (2016). Gamification and education: Achievements, cognitive loads, and views of students. International Journal of Emerging Technologies in Learning (IJET), 11 (07), 64. https://doi.org/10.3991/ijet.v11i07.5455

Unger, S., & Meiran, W. R. (2020). Student attitudes towards online education during the COVID-19 viral outbreak of 2020: Distance learning in a time of social distance. International Journal of Technology in Education and Science, 4 (4), 256–266. https://doi.org/10.46328/ijtes.v4i4.107

Vahldick, A., Farah, P. R., Marcelino, M. J., & Mendes, A. J. (2020). A blocks-based serious game to support introductory computer programming in undergraduate education. Computers in Human Behavior Reports, 2 , 100037. https://doi.org/10.1016/j.chbr.2020.100037

Valle, P. H. D., Toda, A. M., Barbosa, E. F., & Maldonado, J. C. (2017). Educational games: A contribution to software testing education. In  2017 IEEE Frontiers in education Conference (FIE)  (pp. 1–8). IEEE. https://doi.org/10.1109/FIE.2017.8190470

Vankúš, P. (2021). Influence of game-based learning in mathematics education on students’ affective domain: A systematic review. Mathematics, 9 (9), 986. https://doi.org/10.3390/math9090986

Venkatesh, P., Das, S., & Das, A. K. (2021). Design and development of low-cost unplugged activities for teaching computational thinking at K-5 level. In  Design for Tomorrow—Volume 3  (pp. 523–534). Springer, Singapore. https://doi.org/10.1007/978-981-16-0084-5_42

Ventura, J., Qualls, J., Ventura, M., McGinnis, R., Baker, C., & Nikaido, B. (2017). Development of a video game design program in the college of engineering. In SoutheastCon 2017 (pp. 1–7). IEEE. https://doi.org/10.1109/SECON.2017.7925397

Videnovik, M., Kionig, L., Vold, T., & Trajkovik, V. (2018). Testing framework for investigating learning outcome from quiz game: A Study from Macedonia and Norway. In 2018 17th International Conference on Information Technology Based Higher Education and Training (ITHET) (pp. 1–5). IEEE. https://doi.org/10.1109/ITHET.2018.8424777

Videnovik, M., Trajkovik, V., Kiønig, L. V., & Vold, T. (2020). Increasing quality of learning experience using augmented reality educational games. Multimedia Tools and Applications, 79 (33–34), 23861–23885. https://doi.org/10.1007/s11042-020-09046-7

Videnovik, M., Vold, T., Dimova, G., Kiønig, L. V., & Trajkovik, V. (2022). Migration of an Escape room–style educational game to an online environment: Design Thinking methodology. JMIR Serious Games, 10 (3), e32095. https://doi.org/10.2196/32095

Visoottiviseth, V., Phungphat, A., Puttawong, N., Chantaraumporn, P., & Haga, J. (2018). Lord of Secure: The virtual reality game for educating network security. In 2018 Seventh ICT International Student Project Conference (ICT-ISPC) (pp. 1–6). IEEE. https://doi.org/10.1109/ICT-ISPC.2018.8523947

Vlahu-Gjorgievska, E., Videnovik, M., & Trajkovik, V. (2018). Computational thinking and coding subject in primary schools: Methodological approach based on alternative cooperative and individual learning cycles. In  2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE)  (pp. 77–83). IEEE. https://doi.org/10.1109/tale.2018.8615334

Vostinar, P. (2021). MakeCode Arcade: Interesting environment for programming 2D games. In 2021 IEEE World Conference on Engineering Education (EDUNINE) (pp. 1–6). IEEE. https://doi.org/10.1109/EDUNINE51952.2021.9429132

Vourletsis, I., & Politis, P. (2022). Exploring the effect of remixing stories and games on the development of students’ computational thinking. Computers and Education Open, 3 , 100069. https://doi.org/10.1016/j.caeo.2021.100069

Vu, P., & Feinstein, S. (2017). An exploratory multiple case study about using game-based Learning in STEM classrooms. International Journal of Research in Education and Science . https://doi.org/10.21890/ijres.328087

Wang, L. H., Chen, B., Hwang, G. J., Guan, J. Q., & Wang, Y. Q. (2022). Effects of digital game-based STEM education on students’ learning achievement: A meta-analysis. International Journal of STEM Education, 9 (1), 1–13. https://doi.org/10.1186/s40594-022-00344-0

Webster, J. J., & Kit, C. (1992). Tokenization as the initial phase in NLP. In Proceedings of the 14th Conference on Computational Linguistics , (Vol. 4, pp. 1106–1110). https://doi.org/10.3115/992424.992434

Wong, Y. S., Hayati, I. M., Yatim, M., & Hoe, T. W. (2017). A propriety game-based learning mobile game to learn object-oriented programming—Odyssey of Phoenix. In 2017 IEEE 6th International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 426–431). IEEE. https://doi.org/10.1109/TALE.2017.8252373

Wong, G. K. W., & Jiang, S. (2018). Computational thinking education for children: Algorithmic thinking and debugging. In 2018 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE) (pp. 328–334). https://doi.org/10.1109/TALE.2018.8615232

Wong, Y. S., & Yatim, M. H. M. (2018). A propriety multiplatform game-based learning game to learn object-oriented programming. In 2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 278–283). IEEE. https://doi.org/10.1109/IIAI-AAI.2018.00060

Workman, M. D., Luevanos, J. A., & Mai, B. (2021). A study of cybersecurity education using a Present-Test-Practice-Assess model. IEEE Transactions on Education, 65 (1), 40–45. https://doi.org/10.1109/TE.2021.3086025

Xian, T. (2021). Exploring the effectiveness of Sandbox game-based learning environment for game design course in higher education. In T. Ahram, R. Taiar, & F. Groff (Eds.), Human interaction, emerging technologies and future applications IV (pp. 262–272). Cham: Springer. https://doi.org/10.1007/978-3-030-74009-2_33

Yallihep, M., & Kutlu, B. (2020). Mobile serious games: Effects on students’ understanding of programming concepts and attitudes towards information technology. Education and Information Technologies, 25 (2), 1237–1254. https://doi.org/10.1007/s10639-019-10008-2

Yassine, A., Berrada, M., Tahiri, A., & Chenouni, D. (2018). A cross-platform mobile application for learning programming basics. International Journal of Interactive Mobile Technologies (IJIM), 12 (7), 139. https://doi.org/10.3991/ijim.v12i7.9442

Yokoyama, H., Fukui, M., Matsumoto, T., Mori, Y., & Takami, T. (2020). Use gameplay RPA as programming materials. In 2020 Nicograph International (NicoInt) (pp. 92–92). IEEE. https://doi.org/10.1109/NicoInt50878.2020.00028

Yongqiang, C., Xiaojun, W., & Chengbin, Q. (2018). Computer programming education for primary school students. In 2018 13th International Conference on Computer Science & Education (ICCSE) (pp. 1–5). IEEE. https://doi.org/10.1109/ICCSE.2018.8468824

Yu, Z. (2019). A meta-analysis of use of serious games in education over a decade. International Journal of Computer Games Technology, 2019 , 1–8. https://doi.org/10.1155/2019/4797032

Yücel, Y., & Rızvanoğlu, K. (2019). Battling gender stereotypes: A user study of a code-learning game, “Code Combat” with middle school children. Computers in Human Behavior, 99 , 352–365. https://doi.org/10.1016/j.chb.2019.05.029

Zapata-Caceres, M., & Martin-Barroso, E. (2021). Applying game learning analytics to a voluntary video game: Intrinsic motivation, persistence, and rewards in learning to program at an early ge. IEEE Access, 9 , 123588–123602. https://doi.org/10.1109/ACCESS.2021.3110475

Zapušek, M., & Rugelj, J. (2013). Learning programming with serious games. EAI Endorsed Transactions on Game-Based Learning, 1 (1), e6. https://doi.org/10.4108/trans.gbl.01-06.2013.e6

Zaw, H. H., & Hlaing, S. Z. (2020). Verifying the gaming strategy of self-learning game by using PRISM-games. In P. Vasant, I. Zelinka, & G.-W. Weber (Eds.), Intelligent computing and optimization (pp. 148–159). Springer. https://doi.org/10.1007/978-3-030-33585-4_15

Zdravevski, E., Lameski, P., Trajkovik, V., Chorbev, I., Goleva, R., Pombo, N., & Garcia, N. M. (2019). Automation in systematic, scoping and rapid reviews by an NLP toolkit: A case study in enhanced living environments. In I. Ganchev, N. M. Garcia, C. Dobre, C. X. Mavromoustakis, & R. Goleva (Eds.), Enhanced living environments (Vol. 11369, pp. 1–18). Springer. https://doi.org/10.1007/978-3-030-10752-9_1

Zeevaarders, A., & Aivaloglou, E. (2021). Exploring the programming concepts practiced by Scratch users: An analysis of project repositories. In 2021 IEEE Global Engineering Education Conference (EDUCON) (pp. 1287–1295). IEEE. https://doi.org/10.1109/EDUCON46332.2021.9453973

Zhang, F., Kaufman, D., & Fraser, S. (2014). Using video games in computer science education. European Scientific Journal, 10 (22), 37–52. https://doi.org/10.19044/esj.2014.v10n22p%25p

Zhao, D., Muntean, C. H., Chis, A. E., & Muntean, G.-M. (2021). Learner attitude, educational background, and gender influence on knowledge gain in a serious games-enhanced programming course. IEEE Transactions on Education, 64 (3), 308–316. https://doi.org/10.1109/TE.2020.3044174

Download references

Acknowledgements

Not applicable.

No funding was received for conducting this study.

Author information

Authors and affiliations.

Center for Innovations and Digital Education Dig-Ed, Solunska glava br.3, 1000, Skopje, North Macedonia

Maja Videnovik

Department of Business Administration and Organizational Studies, Inland Norway University of Applied Sciences, Holsetgata 31, 2318, Hamar, Norway

Tone Vold & Linda Kiønig

Faculty of Computer Science and Engineering, Ss Cyril and Methodius University in Skopje, Rugjer Boshkovikj 16, 1000, Skopje, North Macedonia

Ana Madevska Bogdanova & Vladimir Trajkovik

You can also search for this author in PubMed   Google Scholar

Contributions

VT and AMB had the idea for the article. TV defined the methodological steps. MV and AMB performed the literature search and data analyses. Data analyses were supported by VT and LK. MV drafted the article, while TV critically revised the work.

Corresponding author

Correspondence to Tone Vold .

Ethics declarations

Competing interests.

The authors declare that they have no competing interests.

Additional information

Publisher's note.

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ .

Reprints and permissions

About this article

Cite this article.

Videnovik, M., Vold, T., Kiønig, L. et al. Game-based learning in computer science education: a scoping literature review. IJ STEM Ed 10 , 54 (2023). https://doi.org/10.1186/s40594-023-00447-2

Download citation

Received : 27 March 2023

Accepted : 18 August 2023

Published : 06 September 2023

DOI : https://doi.org/10.1186/s40594-023-00447-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • Scoping review
  • Game-based learning
  • Educational games
  • Computer science
  • Computer science education

research topics about computer games

Articles on Computer game design

Displaying all articles.

research topics about computer games

‘Baldur’s Gate 3’ became the surprise hit of 2023 by upending conventional wisdom about what gives video games broad appeal

James Dawes , Macalester College

research topics about computer games

What the new Assassin’s Creed game tells us about ninth-century Baghdad – from the art historian who worked on the game

Glaire Anderson , The University of Edinburgh

research topics about computer games

Here’s why The Legend of Zelda: Tears of the Kingdom is big news – even among those who don’t see themselves as ‘gamers’

Padraic Heaton , University of Technology Sydney

research topics about computer games

Nonprogrammers are building more of the world’s software – a computer scientist explains ‘ no-code ’

Tam Nguyen , University of Dayton

research topics about computer games

How to be a god: we might one day create virtual worlds with characters as intelligent as ourselves

Richard A. Bartle , University of Essex

research topics about computer games

It’s 35 years since the ‘worst video game ever’ was released – has anything beaten it?

Craig Weightman , Staffordshire University

research topics about computer games

Video games encourage Indigenous cultural expression

Elizabeth LaPensée , Michigan State University

research topics about computer games

If videogames do benefit pupils’ education and skills, it’s time we found out how and why

Carlo Perrotta , University of Leeds

research topics about computer games

Want to build better computer games? Call an architect

Ruth Dalton , Northumbria University, Newcastle

research topics about computer games

The best video games need not imitate films to be worth a Bafta

Carlton Reeve , University of Bradford

research topics about computer games

Virtual rape in Grand Theft Auto 5: learning the limits of the game

Michael Kasumovic , UNSW Sydney and Rob Brooks , UNSW Sydney

No country for new games

Brendan Keogh , RMIT University

research topics about computer games

Flappy Bird and the eight secrets to optimal gameplay

Chek Tien Tan , University of Technology Sydney

research topics about computer games

Review: CUSP – Designing into the Next Decade

Anthony Burke , University of Technology Sydney

research topics about computer games

Indie videogames are taking it to the next level of story design

Alexander Muscat , RMIT University

research topics about computer games

Games criticism as its own thing

research topics about computer games

AAA ratings: when do videogames become too realistic?

Stefan Greuter , RMIT University

research topics about computer games

BAFTA wins reflect British flavour in modern gaming

Nick Robinson , University of Leeds

Related Topics

  • Computer games
  • Computer programming
  • Digital economy
  • Game design
  • Games criticism
  • Grand Theft Auto
  • Video game design
  • Video games

Top contributors

research topics about computer games

Senior Lecturer, Queensland University of Technology

research topics about computer games

Scientia Professor of Evolutionary Ecology; Academic Lead of UNSW's Grand Challenges Program, UNSW Sydney

research topics about computer games

Evolutionary Biologist, ARC Future Fellow, UNSW Sydney

research topics about computer games

Associate Professor in Politics, University of Leeds

research topics about computer games

Director, Deakin Motion Lab, Deakin University

research topics about computer games

Game designer, PhD student, teacher, RMIT University

research topics about computer games

Co-director, Games Studio, Human Centred Design Technology, University of Technology Sydney

research topics about computer games

Associate Dean - Research and Innovation, Staffordshire University

research topics about computer games

Professor of Computer Game Design, University of Essex

research topics about computer games

Professor of Architecture, Northumbria University, Newcastle

research topics about computer games

Senior lecturer, Monash University

research topics about computer games

Assistant Professor of Media and Information and Writing, Rhetoric and American Cultures, Michigan State University

research topics about computer games

Senior lecturer in Games and Visual Effects, Staffordshire University

research topics about computer games

Associate Professor of Computer Science, University of Dayton

research topics about computer games

Casual Academic, University of Technology Sydney

  • X (Twitter)
  • Unfollow topic Follow topic

Science Connected Magazine

How Video Games Are Making Research Fun

Facebook

Gamification and citizen science meet when research projects create video games to make data collection and analysis fun.

The SciStarter Blog

By Nathaniel Scharping

While we might imagine a scientist as a chemist concocting substances in a lab, or a biologist diving with sea creatures, the reality is often far more mundane. Much of science involves collecting and analyzing data, and that process isn’t always very exciting. Think counting bacteria in a petri dish, or noting if two stars look alike in an image of the Milky Way.

But a number of research projects have found a way to buck that trend and turn the grinding work of data collection and analysis into something fun, even rewarding. By creating games that bake the process of data collection into their mechanics, players can contribute data and even uncover new insights just by playing along. Gamification, along with the growing movement known as citizen science, which invites volunteers to take part in real science research, is, in its own way, reshaping what it means to do science.

Gamifying Science

Games that pair citizen science with rewarding play are probing treatments for cancer, helping to cure Alzheimer’s, probing the foundations of language and more. Not only are the games made to be fun, but they address a prevailing issue among crowdsourcing projects: the dropoff rate. Citizen science games tackle the problem with game mechanics that allow players to uncover valuable data through the simple act of playing, keeping them engaged. The results can be striking: Volunteers with the citizen science game Stall Catchers were able to process 50 times as much data as scientists working alone. And research in The Lancet on citizen science volunteers playing the game Cell Slider found that the players were more than 90 percent accurate in classifying images of tumors, nearing the accuracy of trained pathologists.

“The concept is for the player, without actually knowing the background of the problem, without knowing the science of the problem, to be able to do something that helps solve the problem,” says Jay Halderman, the vice president of  BALANCED Media |Technology , a video game company that’s created multiple citizen science video games.

The studio’s most recent game is a pattern-matching challenge called Rocks & Runes . Players place cartoon bombs on a board filled with brightly-colored runes, with the goal of destroying rocks and matching runes together. The game might feel familiar to anyone who’s ever played Candy Crush, and it takes all of five minutes to get the hang of.

Screenshot of Rocks & Runes gameplay

But beneath the bursts of color and flurries of point multipliers, players’ decisions are actually sorting through data from FDA-approved drug compounds to identify those that might be useful against multiple-drug-resistant chemotherapy. By eliminating rocks with bombs, players are virtually eliminating the ineffective properties of existing drugs and pointing machine learning algorithms toward more useful compounds, helping to sift out promising candidates from thousands of drugs.

Still, a player doesn’t even need to know the potential scientific benefits to enjoy the game. Adding enough reward to the gameplay to keep players interested in the game itself is a fundamental goal when designing citizen science games, says Nathan Bowden, a senior game designer at BALANCED Media|Technology.

“Everything we do, we’re trying to look at it through the lens of ‘is this fun?’” he says.

The designers often draw from existing video game archetypes — pattern matching, first-person shooters and more — when looking for inspiration. Sometimes the real challenge is simply finding the right paradigm for a particular dataset or scientific problem, Bowden says. When designing Wiley Wizard , a game that works with the same dataset as Rocks & Runes, the designers played around with half a dozen different game ideas before settling on one, a spooky cartoon world where a wizard fights ghosts.

“There’s just so many different ways you can encapsulate one piece of research into a single mechanic,” Bowden says.

Games With an Open Canvas

Another citizen science game, Glyph , takes a different approach. Instead of creating rigid rules or a defined path of gameplay, the project, which studies and compares alphabets from around the world, instead offers players a nearly blank slate.

The simple game asks players to come up with a set of rules to differentiate letters from alphabets around the world. The goal, says Olivier Morin , one of the game’s creators and a researcher at the Max Planck Institute for Geoanthropology in Jena, Germany, is to develop a kind of grammar of letter shapes that the researchers can use to study how letters have evolved and how the shapes of letters affect our cognition. The researchers could have paid participants to do the work, like other lab experiments often do, Morin says. But by gamifying the process of data collection, he hopes they’ll be able to reach people who are much more creatively involved in the process, and more likely to come up with unique solutions.

“We need creative players who want to push the boundaries of the game and create unique kinds of data we could never gather in an experiment,” Morin says.

Players get points for coming up with rules for classifying the shapes of letters (think: these are all round, these all have a vertical line), with extra points if they’re the first-ever person to propose a particular rule. The response so far has been encouraging, Morin says, with a few thousand players from around the world. That’s ideal for a small game like theirs, he says, where the real goal is to reach people who might be highly interested in the challenge. Their top player right now has more than 60,000 points, which represents weeks of gameplay.

“That person really spent weeks trying to devise the most elegant, intelligible but innovative classification she could think of to make sense of letter shapes,” Morin says. “There’s no way a paid participant would do that in a few hours.”

Screenshot of Omega Cluster gameplay.

At Balanced Media, the designers have been exploring other ways to entice players to participate, including creating games that can be played inside live Twitch streams, which allow gamers to broadcast matches and interact. They created a new game styled like the classic “Asteroids” arcade game that can be played between matches right on Twitch. Players must separate matter from antimatter by drawing a straight line across the screen, a simple task that helps sort the same drug compound data as Rocks & Runes and Wiley Wizard.

Other citizen science games offer even more ways to get involved. The popular Stall Catchers game asks players to find “stalls,” or blocked blood vessels, in images of mouse brains to advance Alzheimer’s research. And in the iPad game NeMO- Net , players classify corals to help train an algorithm that’s watching over the health of coral reefs around the world.

There may be even more ways for gamers to do citizen science soon. Or, to put it another way, we may soon have even more fun citizen science games. The technology and infrastructure supporting the video game industry continues to grow, unlocking new capabilities and audiences as it does so.

“It’s giving us more and more opportunities for ways to present these things to a player,” Bowden says. “That’s incredibly exciting, the potential there.”

Want to try some for yourself? Find dozens of citizen science games on SciStarter .

Do video games affect your mood? Read more about Video Gaming Disorder and Mental Health .

About the Author

Nate is a science writer and editor who has reported everywhere from particle colliders to archaeological digs. He’s also a cofounder of Lunaris Creative, an agency focused on scientific storytelling for brands and nonprofits. You can find clips of his work at nathanielscharping.com.

Recommended for You

Solo videogamer with over-ear headphones sits with back to the camera in front of a lit-up television screen

Video Gaming Disorder May Be Linked to Underlying Mental Health

Ultrasound is focused to create a hologram in the shape of a virtual sphere (Bristol Interaction and Graphics group, University of Bristol, © 2014)

Holograms You Can Touch and Feel

SciStarter Logo showing people out in the snow. In the center it reads "Play in the snow for science!"

Play in the snow … for science!

  • USC Libraries
  • Research Guides
  • Computer Science *
  • Game Development

Computer Science *: Game Development

  • Programming
  • Artificial Intelligence
  • Data Science
  • Computer Security
  • Computer Networks
  • Software Engineering
  • Business Administration
  • Video Games

Game Studies

  • Development & Design
  • Virtual Reality
  • Augmented Reality
  • Mobile Games

Here are recent ebooks that can get you started with game development and design:

Cover Art

Here are recent ebooks that can get you started with virtual reality:

Cover Art

Here are recent ebooks that can get you started with augmented reality:

Cover Art

Here are recent ebooks that can get you started with mobile games:

Cover Art

Here are some of the academic journals that USC Libraries subscribes to that are related to game studies, game development, etc.:

  • Game Studies: The International Journal of Computer Game Research To explore the rich cultural genre of games; to give scholars a peer-reviewed forum for their ideas and theories; to provide an academic channel for the ongoing discussions on games and gaming.
  • Games and Culture Games and Culture peer-reviewed and published quarterly, is an international journal that promotes innovative theoretical and empirical research about games and culture within interactive media. The journal serves as a premiere outlet for ground-breaking work in the field of game studies and its scope includes the socio-cultural, political, and economic dimensions of gaming from a wide variety of perspectives.
  • Media, Culture, & Society Media, Culture & Society provides a major international forum for the presentation of research and discussion concerning the media, including the newer information and communication technologies, within their political, economic, cultural and historical contexts. The journal is interdisciplinary, regularly engaging with a wider range of issues in cultural and social analysis. Its focus is on substantive topics and on critique and innovation in theory and method.
  • Computer Animation and Virtual Worlds Computer Animation and Virtual Worlds is the first journal to address the global thematic of the Virtual Worlds. These consist of computer animation, embodied agents, virtual environments, augmented reality, virtual life and visualisation. This hybrid journal is read by scientists, artists and technicians applying animation techniques.
  • The Computer Games Journal he Computer Games Journal is a worldwide, peer-reviewed publication providing knowledgeable, well-written articles from academics and practitioners that are relevant to the games industry. It aims to encourage and promote research into games development and the games industry as a whole. The journal publishes up-to-date research and opinions on current games development and industry issues, and also provides a format for airing ground-breaking dissertations and essays from computing and games students.
  • GAME: The Italian Journal of Game Studies GAME – Games as Art, Media, Entertainment is an international, peer-reviewed, free access scholarly journal dedicated to games and play.
  • Loading… The Official Journal of the Canadian Game Studies Association Loading: The Journal of the Canadian Game Studies Association is a forum for publishing original and interdisciplinary academic research on video games. We accept work from a variety of perspectives: from research on video game cultures and industries to educational approaches to the study and development of digital games, and from computer science driven papers on designing and testing games to psychological research on video games and their effects. Founded in 2007, the journal accepts articles from researchers in Canada and world wide. We publish at least two issues per year.
  • << Previous: Programming
  • Next: Robotics >>
  • Last Updated: May 6, 2024 12:30 PM
  • URL: https://libguides.usc.edu/computerscience

Jan 28 2023

  • 7 Research Topics for PhD Students in Game Technology

Joan Carlos (Edit)

Products & Services

Research in the game industry is important for a number of reasons. Firstly, the game industry is a rapidly growing and evolving field, with new technologies and advancements being made on a regular basis. This means that there is a constant need for new research to explore and understand these developments, and to find ways to apply them to create better and more immersive gaming experiences.

Another important reason why research in the game industry is important is that it can have a significant impact on other areas of technology and society. For example, research in game technology can lead to the development of new tools and techniques for creating virtual and augmented reality experiences, which can be applied in fields such as education, medicine, and architecture. Additionally, research in game technology can also lead to the development of new algorithms and AI techniques that can be used in other areas such as robotics and autonomous systems.

Moreover, game industry is an industry that has a tremendous impact on people's lives. Game research is important to understand how the game affects people's behavior, emotions, and cognition. It is also important to explore how games can be used to educate, train, and entertain people. For example, games are used to teach languages, coding, and history.

Here are seven open research topics for PhD students who like Game technology

1- Real-time rendering techniques for virtual and augmented reality: This research topic would explore ways to optimize the performance of rendering algorithms in order to improve the visual quality of virtual and augmented reality games and applications.

2- Game AI and machine learning : This research topic would investigate the use of artificial intelligence and machine learning techniques in game development, including the use of neural networks for game character behavior and decision-making, and the use of reinforcement learning to train game agents.

3- Game physics and simulation: This research topic would explore the use of physics-based simulations in games, such as rigid body dynamics, fluid simulation, and cloth simulation. The goal would be to create more realistic and immersive game environments.

4- Game design and player experience: This research topic would investigate how different game design elements, such as level design, game mechanics, and story, affect player experience and engagement. This could include user studies and player testing to understand how players interact with and respond to different game design elements.

5- Game localization and cultural adaptation: This research topic would explore the cultural adaptation of games for different regions and languages. It would investigate the challenges and opportunities of game localization, including the cultural differences that may affect the player experience and how to adapt the game to be more culturally relevant.

6- Game Analytics and personalization: This research topic would investigate the use of data analytics and player modeling to understand player behavior, preferences and adapt game content and mechanics to each player preferences.

7- Game development platforms and tools: This research topic would investigate the development of new game development platforms and tools that enable game developers to create more efficient and effective game development processes.

Tags: 7 Research Topics for PhD Students in Game Technology

The Most Exciting Research Topics in Robotics: Insights from Leading PhD Programs

The Most Exciting Research Topics in Robotics: Insights from Leading...

February 26, 2023

Featured Jobs

Editors' picks, recent posts.

The Benefits of Studying STEM Programs in the US for International Students

The Benefits of Studying STEM Programs in the US for...

March 02, 2023

Top 10 PhD Scholarships You Should Apply For in 2023

Top 10 PhD Scholarships You Should Apply For in 2023

10 Tips for Successfully Applying for PhD Scholarships

10 Tips for Successfully Applying for PhD Scholarships

February 25, 2023

Choosing the Right PhD Supervisor: Why Researching Your Supervisor is Key to a Successful Research Program

Choosing the Right PhD Supervisor: Why Researching Your Supervisor is...

February 20, 2023

Cover Letter and CV for a PhD Position

Cover Letter and CV for a PhD Position

January 31, 2023

This site uses cookies to deliver our services and to show you relevant ads and job listings. By using our site, you acknowledge that you have read and understand our Privacy Policy , and our Terms and Conditions . Your use of SearchaPhd’s Products and Services, is subject to these policies and terms. If you do not use the cookie, some functions may not work properly.

  • University of Michigan Library
  • Research Guides

Video Game Studies

  • Book Resources
  • Other Periodicals
  • Other Resources
  • Studying Games at U-M
  • Game-Based Learning
  • Serious Games
  • Game Preservation
  • Online Games
  • DEIA Topics in Games
  • Race & Ethnicity in Games
  • Women in Games
  • LGBTQ+ Topics in Games
  • Making Games Accessible

Library Contact

Profile Photo

What Is Video Game Studies?

Broadly stated, video game studies is the academic analysis of various aspects of computer, console, arcade, and Internet games. It is frequently an interdisciplinary field of study, with scholars from film and media studies, popular cultural studies, American studies, psychology, sociology, education, and literature departments writing about and critiquing games and gaming. Video game studies fall primarily into two main academic camps: social sciences-based studies and humanities-based studies. Social science-based game studies look at the ways that games and gaming affect people, and how people make sense of and interact with games. Humanities-based game studies examine the meaning and context of the games themselves, either in terms of the narratives created and possibly created by video games, or by the unique possibilities for analysis presented by the interactive nature of video games .*

Information on finding books, articles, websites, magazines, and other materials related to video game studies can be accessed through the tabs to the left.

Students interested in studying video games should visit this page on Studying Games at U-M for more information on academic opportunities and courses offered at the University of Michigan.

* Konzack, L. (2007). Rhetorics of computer and video game research. In Williams, J.P. & Smith, J.H., The players' realm: Studies on the culture of video games and gaming. London: McFarland and Company, Inc.

Resources for Game Research

  • Video Game Development Libguide Selected resources designed to assist those who are interested in computer and video game design, development, and programming.
  • Film and Video Studies/Screen Arts and Cultures Selected resources useful for conducting research on moving image media of all kinds, including video games.
  • Deep Blue Archives Search for past research done at the university by searching for "video games" in our repository.

IEEE Account

  • Change Username/Password
  • Update Address

Purchase Details

  • Payment Options
  • Order History
  • View Purchased Documents

Profile Information

  • Communications Preferences
  • Profession and Education
  • Technical Interests
  • US & Canada: +1 800 678 4333
  • Worldwide: +1 732 981 0060
  • Contact & Support
  • About IEEE Xplore
  • Accessibility
  • Terms of Use
  • Nondiscrimination Policy
  • Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest technical professional organization dedicated to advancing technology for the benefit of humanity. © Copyright 2024 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.

Academia.edu no longer supports Internet Explorer.

To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to  upgrade your browser .

Enter the email address you signed up with and we'll email you a reset link.

  • We're Hiring!
  • Help Center

paper cover thumbnail

Software engineering research for computer games: A systematic review

Profile image of Ioannis Stamelos

2010, Information and Software Technology

Related Papers

International Journal of Environmental Research and Public Health

Fernando J. Fuentes García

In recent years, interest in video game live streaming services has increased as a new communication instrument, social network, source of leisure, and entertainment platform for millions of users. The rise in this type of service has been accompanied by an increase in research on these platforms. As an emerging domain of research focused on this novel phenomenon takes shape, it is necessary to delve into its nature and antecedents. The main objective of this research is to provide a comprehensive reference that allows future analyses to be addressed with greater rigor and theoretical depth. In this work, we developed a meta-review of the literature supported by a bibliometric performance and network analysis (BPNA). We used the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) protocol to obtain a representative sample of 111 published documents since 2012 and indexed in the Web of Science. Additionally, we exposed the main research topics developed to dat...

research topics about computer games

Ole Kjeldal Jensen

When developing procedures such as tools, methods and frameworks to support the development of new products, one of the challenges is ensuring their successful implementation. This paper describes a study of the development and use of such design-procedures with primary focus on the new product development process-model, its supporting methods and handling of knowledge. Semi-structured interviews with 20 participants have been carried out to understand the use of procedures. All the interviews were conducted in a company, which develops large complex equipment for oil rigs. The findings suggest that a complex understanding of procedures and reasons for divergence needs to be adopted, where implicit as well as explicit procedures are recognised and managed. Three distinct types of implicit procedures were uncovered through the study: 1) historical implicit procedures; 2) social interpretations of explicit procedures and; 3) implicit procedures supporting needs that are not catered fo...

Martin Ruskov

This study was conducted with the purpose to explore the potential of serious games to utilize systematic learning variation. We employed a methodology that followed the learning study method, while we also introduced experimental and control groups in order to allow for more direct comparison. In this study we did not have control over the employed serious game (vLeader) and thus had to implement our experiment through its supplementary materials. The study explores a systematic approach towards serious games design. This study provides weak evidence of greater stakeholder awareness by the group that has experienced variation. Its exploratory findings provide a valuable contribution that could inform design of future serious games.

Education and Information Technologies

Carmem Teresa Pereira Leal

Richard Starmans

This essay highlights some aspects, core themes and controversies regarding causality from a historicalphilosophical perspective with special attention to their role in the AI-data science debate. Firstly, it outlines the contours of this debate and subsequently addresses the aporia of causality in statistics, AI and the philosophy and science. In view of the prevalent crisis some key themes and controversies are identified, and a frame of reference is proposed, that may clarify historical controversies and the current state of “agreeing to disagree” in science and philosophy. Secondly, the essay highlights the historical scope of the concept, outlines some early perspectives and “key moments”, that involved main conceptual shifts. Thirdly, the essay outlines the rise of statistics and its role in attempting to defuse the crises by entering a sort of progressing liaison with causality. Finally, it is shown how research in AI has further shaped the concept and how and why causality i...

Malek El Kouzi

Aljaž Zrnec

Purpose Existing research on the measurability of information quality (IQ) has delivered poor results and demonstrated low inter-rater agreement measured by Intra-Class Correlation (ICC) in evaluating IQ dimensions. Low ICC could result in a questionable interpretation of IQ. The purpose of this paper is to analyse whether assessors’ motivation can facilitate ICC. Methodology To acquire the participants’ views of IQ, we designed a survey as a gamified process. Additionally, we selected Web study to reach a broader audience. We increased the validity of the research by including a diverse set of participants (i.e. individuals with different education, demographic and social backgrounds). Findings The study results indicate that motivation improved the ICC of IQ on average by 0.27, demonstrating an increase in measurability from poor (0.29) to moderate (0.56). The results reveal a positive correlation between motivation level and ICC, with a significant overall increase in ICC relativ...

Proceedings of the 4th International Conference on Higher Education Advances (HEAd'18)

Maria Limniou

IEEE Access

Suzanne Elayan

Lilia Cavallari

Loading Preview

Sorry, preview is currently unavailable. You can download the paper by clicking the button above.

RELATED PAPERS

Tania Ouariachi

Balraj Kumar

Journal of Computers in Education

Stella Douka

Jefferson Seide Molléri

Journal of Chemical Education

Ana Raquel De la Osa

International Journal of Serious Games

Menelaos Katsantonis

IEEE Transactions on Education

Gabriel-Miro Muntean

Knowledge Management & E-Learning: An International Journal

João Emílio Almeida

Malaysian Journal of Computer Science

Yin Kia Chiam

Suppawong Tuarob

Ulrike Lechner

Mario Pichler

Information

Athanasios Kakarountas

International Journal of Advanced Computer Science and Applications

Muhammad hafis Hafis

Dodi S E T I A W A N Riatmaja

Journal of Information Technology Education: Innovations in Practice

Markku Tukiainen

Patricia Martín-Rodilla

IEEE Transactions on Visualization and Computer Graphics

Proceedings of the 10th International Conference on Computer Supported Education

Journal of Software Engineering Research and Development

Luciana Aparecida Martinez Zaina

Journal on Interactive Systems

Adson Damasceno

Eirini Malegiannaki

Multimodal Technologies and Interaction

Scientia Iranica

Mohammad Rabiei

João Patrício

SN Computer Science

Sachiko LIM

Ernesto Damiani

Secure Data Management

Ashish Kamra

Computers & Education

Ivan Garcia

The Challenges of the Digital Transformation in Education

Eleftherios Anastasovitis

Elisa Bertino

Amber Settle

Virtual Reality

Henrique S. Mamede

Daniela Marghitu

International Journal for Digital Society

Eleni G. Makri

2019 ASEE Annual Conference & Exposition Proceedings

Debra Davis

Journal of Systems and Software

Ioannis Stamelos

RELATED TOPICS

  •   We're Hiring!
  •   Help Center
  • Find new research papers in:
  • Health Sciences
  • Earth Sciences
  • Cognitive Science
  • Mathematics
  • Computer Science
  • Academia ©2024

Custom Essay, Term Paper & Research paper writing services

  • testimonials

Toll Free: +1 (888) 354-4744

Email: [email protected]

Writing custom essays & research papers since 2008

127 excellent video game research topics for 2023.

video game research topics

Are you looking for the best video game research topics for 2023? We are proud to say that you have arrived at the right place. Our experienced ENL writers and professional editors have just finished creating our brand new list of 127 awesome video game topics for high school and college students. You can use any of our ideas for free – no credits required.

Best Way To Write A Video Game Essay

Before we get to the list of topics, we want to make sure you know how to write a great essay. After all, finding a great topic is just part of the writing process of any custom term papers . Here are some pointers that should help you do a better job on your research paper:

  • Structure your paper properly and always start with an outline. We recommend you use the 5 paragraph essay structure, as it’s extremely versatile.
  • Make sure your grammar and vocabulary are spot-on. Edit your work and polish your writing to make sure you get a top grade.
  • Be careful with quotes and citations. Remember to include all your sources in the References chapter.
  • Always start your paper with a great thesis statement. Dedicate some time to crafting the best one possible.
  • Keep in mind that each body paragraph should start with a clear statement and then support it. Don’t tackle more than one important idea in a paragraph.
  • Make sure you research the topic thoroughly and get accurate data from reputable sources. This is, after all, a research paper.
  • Last, but not least, write in a clean and concise manner. Express your ideas clearly and avoid unnecessary information that would just confuse or bore your readers.

Now that you know what to do and what to avoid when writing the video game research paper, it’s time to take a look at our list of original video game research topics:

Easy Video Game Topics

We will start our list with a selection of easy video game topics that are perfect for students who don’t want to spend too much time on their papers:

  • Talk about your favorite video game
  • What do you like about modern video games?
  • The process behind the creation of a new game
  • Why do you want to become a video game developer?
  • What is a MMORPG video game?
  • Differences between FPS and RPG games
  • Analyze the gaming industry in a country of your choice
  • An in-depth look at cyber sports and video game championships
  • Can playing video games be considered a sport?
  • What makes League of Legends so popular?
  • Research gun violence in modern video games
  • Are the games you play bad for you?
  • Talk about the impact of video games on small children
  • Do video games have any positive effects on you?

Video Games Topic For Every Student

Below, you will find a selection of topics for every student from high school to college. Check out our video games topic for every student list:

  • The psychology behind modern video games
  • Analyze the launch of a popular game
  • How are video games priced?
  • The history of online gaming
  • Games as learning tools
  • Controlling video game addiction
  • Shooters or strategy games?
  • Why you shouldn’t play video games
  • Physical benefits of games

Interesting Video Game Topics To Write About

We know; you want a topic that is both interesting and easy to write about. Take a look at these interesting video game topics to write about:

  • Do violent video games make teens violent?
  • What is the effect of video games on children?
  • What changed my view on video games?
  • Skills that can be improved by playing games
  • Do adults play video games?
  • Research the increase in demand for video games
  • Compare video games in the US and the UK
  • Ethical responsibility in the gaming industry
  • How addictive are role playing video games?

Fun Gaming Topics

Yes, writing a research paper can be fun – if you choose a great topic. Pick any of our fun gaming topics and start writing your paper right away:

  • The entire history of video games
  • Positive effects of video games
  • Android games vs iOS games
  • The Candy Crush popularity
  • Gaming industry careers
  • Genres of video games
  • The technology behind the Xbox 4
  • What causes addiction when it comes to video games?
  • How do games improve learning skills?

Latest News On Video Games

If you want to write about something new, we recommend you take a look at the latest news in video games:

  • Talk about the use of augmented reality in video games in 2023
  • What are incremental console upgrades?
  • An in-depth look at inclusivity in video games
  • Which games are trending in 2023?
  • Most anticipated video games of 2023
  • Latest advances in 3D and SFX effects
  • Talk about the remastered cinematics of Diablo 2 Resurrected
  • Halo Infinite: everything we know so far
  • The clan system in Call of Duty: Vanguard

Informative Gaming Topics To Talk About

Do you want to write an informative paper? No problem, we have a long list of informative gaming topics to talk about right here:

  • Why do people love video games so much?
  • Can video game addiction be treated like substance addiction?
  • Case study: The Elder Scrolls of Oblivion
  • Discuss government regulation of video games in the US
  • Compare and contrast the Xbox and the PlayStation
  • A closer look at the Japanese gaming industry
  • What does it take to become a video game creator?
  • The rise of Android video games
  • Do we really need computer games nowadays?

Video Game Research Paper Topics For High School

Our list of video game research paper topics for high school is unique, so you can safely pick any one of our ideas and write your essay on it:

  • What do modern video games promote?
  • How much time should you spend playing video games?
  • Are video games good or bad for our youth?
  • Talk about how gaming will look 20 years from now
  • Does playing video games make you think more strategic?
  • How important are video games for our society?
  • The importance of video games in treating depression
  • Are games a good way to treat anxiety?
  • Why do people spend so much money on video games?

Best Video Game Research Questions

A question is usually enough to spark your creativity. This is why we have an entire list of the best video game research questions right here:

  • Are video games good for teens?
  • How does video game violence affect children?
  • How will games look 50 years from now?
  • How do games improve our collaborative skills?
  • Why do we love looking at other play video games?
  • How damaging is piracy for the video game industry?
  • Which are more popular, RPGs or FPSs?

Video Games Debate Topics

Are you preparing for a debate and need a great topic? Don’t worry about it; we’ve got your back. Check out these great video games debate topics:

  • Discuss sexism in modern video games
  • Talk about social problems related to video games
  • Virtual reality in future games
  • The important of augmented reality
  • Can a game be educational?
  • What makes games so fun and addictive?
  • Gaming in the classroom in 2023
  • Interesting online gaming experiences
  • Important of games in special education settings

Good Video Game Writing Prompts

Are you looking for some good video game writing prompts that can help you write an intriguing research paper? Here are some of our best ideas:

  • Compare and contrast the top 3 games in the United Kingdom in 2023
  • What are some problems with modern video games?
  • An in-depth look at advanced SFX effects
  • 3D game rendering technologies
  • Discuss online piracy related to video games
  • Maslow’s Hierarchy of Needs: Modern video games
  • How realistic are modern games in 2023?
  • Tackle the violence theme in video games
  • Sony vs. Microsoft: gaming giants battle
  • The link between gaming and violence in teenagers
  • Discuss the addictiveness of video games

Video Games Research Paper Topics For College

Of course, we have a list of video games research paper topics for college students. These are a bit more difficult than the others in our list:

  • Linking video game addiction to substance abuse
  • The use of first person shooter games in military training programs
  • Flight simulation games and their real world applications
  • Games that improve critical thinking skills
  • The minimum age for playing video games
  • Games that improve reaction times
  • Pros and cons of playing assassin video games
  • Debunking the most popular myths about video games
  • Should parents prevent their children from playing video games?
  • The link between video games and cognitive skill improvements

Engaging Video Games Topics

Want to engage your audience right from the start? If you are looking to impress your professor, you might want to give these engaging video games topics a try:

  • The role of a developer in the video game industry
  • How is testing being carried out on video games?
  • Talk about the latest and most advanced video game effects
  • An analysis of the video game industry in 2023
  • Compare the 3 most popular games in the United States in 2023
  • Are online video games more addictive than single-player ones?
  • Discuss about the psychological effects of video games
  • Compare and contrast 3 first person shooter games
  • Improving reaction time in FPS games
  • The effect of video games on education

Video Games Of The Future

Last, but not least, we have a nice compilation of ideas related to video games of the future. Take a look at our innovative ideas and pick the one you like:

  • A closer look at Battlefield 2042
  • Talk about how rendering graphics works in games
  • Advances in graphics planned for games to be released in 2023
  • Innovative graphics in Halo Infinite
  • Discuss 3D game rendering technologies of the future
  • What makes Pragmata a game of the future?
  • The use of artificial intelligence in games in 2023
  • Research the use of virtual reality in future games
  • Discuss real-time rendering in future 3D games
  • An in-depth look at Hytale (to be released in 2023)

Get Affordable Writing Help

Are you struggling to write a compelling research paper about the subject of video games? Why don’t you get some affordable writing help and term paper help ? Our company has the best writers and experts on the Internet, so you don’t have to worry about a thing. You just tell us what you need and we will write you a high quality custom research paper for any class. Over the years, we have helped thousands of high school, college and university students with their research papers. We can guarantee your teachers will love our work!

So, can your experts write my paper right now? Yes, you can use our secure and reliable academic writing services to get a great video game essay online in no time – in as little as 3 hours. Let our experts write your paper and impress your professor. Get a top grade with minimal effort. And don’t forget to ask our customer support team about our latest discounts!

cultural identity essay

Regions & Countries

Publications

  • Our Methods
  • Short Reads
  • Tools & Resources

Read Our Research On:

Teens and Video Games Today

85% of U.S. teens say they play video games. They see both positive and negative sides, from making friends to harassment and sleep loss.

Teens and Internet, Device Access Fact Sheet

Today, nearly all U.S. teens (96%) say they use the internet every day. And the share of teens who report being online “almost constantly” has roughly doubled since 2014-2015 (24% vs. 46%).

Online harassment occurs most often on social media, but strikes in other places, too

Three-quarters of U.S. adults who have recently faced some kind of online harassment say it happened on social media.

Parenting Children in the Age of Screens

Two-thirds of parents in the U.S. say parenting is harder today than it was 20 years ago, with many citing technologies – like social media or smartphones – as a reason.

5 facts about Americans and video games

Overall, 43% of U.S. adults say they often or sometimes play video games. Gaming is popular among teens – especially teenage boys.

Younger men play video games, but so do a diverse group of other Americans

In the U.S., four-in-ten women and roughly a quarter of adults ages 65 and older say they play video games at least sometimes.

Why join the gig economy? For many, the answer is ‘for fun’

Nearly a quarter of Americans say they’ve earned money in the digital “platform economy” in the past year, according to a new Pew Research Center survey. Perhaps surprisingly, though, the most commonly cited motivation for these workers is not the pay.

Views on gaming differ by race, ethnicity

Hispanics are more likely than whites or blacks to categorize themselves as gamers.

Gaming and Gamers

Americans’ attitudes toward games – and the people who play them – are complex and often uncertain.

Chart of the Week: The World Cup of (almost) everything

Interactive brackets let you see how the 32 nations competing in the World Cup stack up on 70 different sporting, economic and social indicators.

REFINE YOUR SELECTION

  • Mary Madden (17)
  • Lee Rainie (6)
  • Amanda Lenhart (4)
  • Aaron Smith (3)
  • Drew DeSilver (3)
  • Monica Anderson (3)
  • Andrew Perrin (2)
  • Maeve Duggan (2)
  • Olivia Sidoti (2)
  • Susannah Fox (2)
  • Adam Nekola (1)
  • Alexandra Macgill (1)
  • Anna Brown (1)
  • Brooke Auxier (1)
  • Dan Hess (1)
  • Deborah Fallows (1)
  • Emily A. Vogels (1)
  • Erica Turner (1)
  • George Gao (1)
  • Graham Mudd (1)
  • Jeffrey Gottfried (1)
  • Jessica Vitak (1)
  • Jim Jansen (1)
  • John B. Horrigan (1)
  • Kathryn Zickuhr (1)
  • Kristen Purcell (1)
  • Kristin Thomson (1)
  • Maggie Griffith (1)
  • Michelle Faverio (1)
  • Mike Graziano (1)
  • Paul Taylor (1)
  • Pew Research Center Staff (1)
  • Sara Kehaulani Goo (1)
  • Sydney Jones (1)
  • Tom Rosentiel (1)
  • Wendy Wang (1)

Research Teams

  • Internet and Technology (43)
  • Social Trends (5)
  • Politics (4)
  • Religion (1)

901 E St. NW, Suite 300 Washington, DC 20004 USA (+1) 202-419-4300 | Main (+1) 202-857-8562 | Fax (+1) 202-419-4372 |  Media Inquiries

Research Topics

  • Email Newsletters

ABOUT PEW RESEARCH CENTER  Pew Research Center is a nonpartisan fact tank that informs the public about the issues, attitudes and trends shaping the world. It conducts public opinion polling, demographic research, media content analysis and other empirical social science research. Pew Research Center does not take policy positions. It is a subsidiary of  The Pew Charitable Trusts .

© 2024 Pew Research Center

  • Future Student
  • Admitted Student
  • Parents and Families
  • Industry Leader
  • Current Student
  • Faculty and Staff

search icon

Florida Poly study reveals complex AI limitations in simple games

Dr. Oguzhan Topsakal, Jackson Harper and Colby Edell.

Dr. Oguzhan Topsakal, assistant professor of computer science at Florida Polytechnic University (left), and computer science seniors Jackson Harper and Colby Edell, completed a research project this summer creating a benchmarking tool to measure the reasoning and planning abilities of large language models like ChatGPT.

Dr. Oguzhan Topsakal, assistant professor of computer science at Florida Polytechnic University, and two undergraduate research assistants have created a pioneering benchmarking tool to evaluate the capabilities of artificial intelligence models like ChatGPT and Gemini.

The tool uses simple games like tic tac toe to assess the strategic reasoning and planning abilities of these large language models (LLMs), which include ChatGPT models by OpenAI, Claude models by Anthropic, Gemini models by Google, and Llama models by Meta.

The study revealed that LLMs struggle with simple game strategies. 

“After you see LLMs do so many things, you would think they would do such a simple task very easily, but we have seen they are not really capable of playing these simple games so easily,” Topsakal said. “My 9-year-old son saw it playing on my screen and said, ‘It is not playing well, I can do better.’ 

“We expect LLMs to perform well because they are versatile and capable of correcting, suggesting or generating text. However, we've observed that they are not as strong in reasoning intelligently.”

The effort began as a class project last fall and evolved into a comprehensive research study. 

“Jackson (Harper) and his in-class team worked on preparing a mobile app for playing tic tac toe with large language models and at the end of their class, I proposed to them if they wanted to continue and develop a research study,” Topsakal said. “We enhanced the project and made different kinds of LLMs compete against each other.” 

Topsakal and Harper, a senior computer science major with a cybersecurity concentration, published a paper about their findings in the journal Electronics in April. The research led to the development of the online benchmarking tool created this summer with a grant from Florida Poly. The tool allows different LLMs to compete against one another in simple games like tic tac toe, four in a row and gomoku.

They took up the research along with Colby Edell, a senior computer science major with a concentration in software engineering, who made significant contributions to the development of the web-based game simulation software and benchmark.

“There was no benchmarking tool that made these LLMs compete with each other," Topsakal said. "This competition between the models, I thought, would be a good, interesting contribution to the research.”

The research has implications for the development of Artificial General Intelligence (AGI), he added. 

“We all think AGI is coming soon because of these advances in LLMs,” he said. “AGI is when AI is capable of doing the vast majority of tasks at a human level, but we see that it is not there yet. When it happens, we need to have some tools to measure these capabilities, and this benchmarking tool will help.”

As AI technology continues to evolve, this benchmarking tool could provide insight into the progress toward AGI. 

“This is something that can be used 10 years from now when we get closer to AGI and we see the stats rise and improve through the years,” Harper said. “The games may be simple, but we’ll see how AI can adapt to the games.”

The team made its source code available on the developer platform GitHub, allowing other researchers to contribute to the project. 

"Anyone who wants to give it a try can download the code and try it," Topsakal said. "They can also submit results for new LLMs as they emerge."

The research team published the pre-print of the study at arXiv , an open access archive, and submitted the study to a leading journal in the field for consideration. When published, it will mark an important step in evaluating the capabilities of large language models.

Contact: Lydia Guzmán Director of Communications 863-874-8557

Jansson Boyd

Compulsive Computer Gaming: Should You Be Worried?

The "research" jury is very much out on compulsive gaming..

Posted July 28, 2024 | Reviewed by Gary Drevitch

  • What Is the DSM?
  • Find a therapist near me
  • The prevalence of internet gaming disorder is relatively low.
  • Families should be aware that excessive gaming can lead to compulsive behavior.
  • Treatment such as CBT can help as can shifts in young people's schedules and mindsets.

Courtesy of Pexels/Pixabay

Computer games: Beneficial and fun, or pure evil? I’d like to tell you that I can provide a definitive answer. But the research jury is very much out on this.

The academic literature is wrought with writings about how playing video games can have negative effects. However, such concerns do not appear to be shared by the public at large. Broadly, it seems that most people believe that computer games are in fact positive. However, it can also be detrimental to some.

As many parents of teenage kids know, it can be a constant battle (no pun intended) to get them of their screens while gaming. But it is worth noting that it is not only teenagers who are at risk from excessive gaming; adults and young kids can struggle with hitting the off switch as well. In fact, as many as 65% of the adult U.S. population play computer games and 25% of them are age 45 or older.

Excessive gaming can lead to the condition described as Internet Gaming Disorder (IGD) in the Diagnostic and Statistical Manual of Mental Disorders (DSM-5-TR) which is used by mental health professionals to diagnose mental health conditions. The DSM-5 lists nine symptoms of IGD:

  • If a person uses gaming to relieve their negative mood.
  • Unable to stop.
  • Have withdrawal symptoms when they can’t game.
  • Preoccupied with gaming.
  • Give up on other activities.
  • Have a need to spend more time gaming to satisfy their urge.
  • Deceiving others about the amount of time spent on gaming.
  • Having jeopardized a relationship or maybe lost a job due to playing games.
  • Continue to game despite experiencing problems.

For a diagnosis of IGD to be made, an individual needs to meet five of the nine criteria. It is worth noting that men and boys are more likely to have the disorder. While no one knows exactly how many people might qualify for the diagnosis, there are suggestions that the prevalence in the global population may be around 3.05%. In real terms, that is around 60 million people. Given that there are an estimated 2.7 billion existing gamers worldwide, the likelihood of addictive relationship with gaming is relatively low.

Problem gamers

Many gamers who do not meet the criteria for IGD may still fall into a category of individuals who may require help, typically referred to as problem gamers . These are gamers who, at times, meet two or three of the DSM criteria. The prevalence of problem gamers may around 7%, significantly larger than the group meeting the criteria for IGD.

Problem gaming, like IGD, is more prevalent among males than females. Problem gamers tend to have poor psychosomatic health and the condition is associated with suicidal ideation , so it should be treated seriously.

Not always straightforward

Whilst the symptoms are easy to spot, it is important to put them into context and make sure that a person of concern show multiple symptoms over time. For example, the amount of time spent on gaming can be an indicator as to whether a person is addicted. Some people suffering from IGD spend as much as twelve hours a day gaming. However, this is by no means applicable to all and currently, there is no criteria for how much time a person needs to be gaming. Many gamers will at some point spend too much time gaming and remember being passionate is not the same as having an illness. Without other symptoms it does not mean they are addicted or even a problem gamer. But if you notice excessive gaming with, let’s say, irritability and withdrawal from other activities that they used to enjoy, then keep an eye on them to see if they also fit other DSM criteria.

Even if gamers show behaviours consistent with addiction or problematic gaming, there are researchers who think that it is too difficult to distinguish between the two concepts.

Can it be treated?

Research into IGD and treatment are ongoing, but some success has been found using cognitive behavioural therapy (CBT). One study found that, compared with supportive therapy, CBT had a better success rate in decreasing compulsive internet behavior, anxiety , impulsivity, and social avoidance. Others have suggested that medications used to treat depression and ADHD can help as well. Mindfulness has also been found to help with the reduction of IGD symptoms as it helps reduce the urge to play games, and maladaptive cognitions associated with gaming.

Consider setting household rules as preventative steps

If you are a parent to an avid gamer, establishing rules for when and how often a child can game can help problematic gaming from developing. Restricting gaming time can lead to better sleep, better school grades, less aggression , and a reduced risk of obesity. If you are unsure what a suitable time allocation may be, perhaps consider following the American Association of Paediatrics' recommendation of 1-2 hours of total screen time per day. This may be a challenge at first, but it is bound to become much easier over time as kids adjust and get used to doing other activities instead.

The same applies to an adult who recognises that they spend to much time on gaming. Set yourself a time limit. Set a timer, and when the time is up, stop immediately and do something else. If you find it difficult ask friends and family for help. Tell them you have some concerns and that you are trying to cut back. Ask if they can do more social activities with you, to get you away from the screen. Additionally, consider doing activities that specifically relieves stress , as that is often what excessive gaming is about. Perhaps go for a challenging long walk or bike ride, whatever may work best for you.

research topics about computer games

To find a therapist, visit the Psychology Today Therapy Directory .

Jansson Boyd

Cathrine Jansson-Boyd, Ph.D., is a Consumer Psychologist based at Anglia Ruskin University, Cambridge, UK.

  • Find a Therapist
  • Find a Treatment Center
  • Find a Psychiatrist
  • Find a Support Group
  • Find Online Therapy
  • United States
  • Brooklyn, NY
  • Chicago, IL
  • Houston, TX
  • Los Angeles, CA
  • New York, NY
  • Portland, OR
  • San Diego, CA
  • San Francisco, CA
  • Seattle, WA
  • Washington, DC
  • Asperger's
  • Bipolar Disorder
  • Chronic Pain
  • Eating Disorders
  • Passive Aggression
  • Personality
  • Goal Setting
  • Positive Psychology
  • Stopping Smoking
  • Low Sexual Desire
  • Relationships
  • Child Development
  • Self Tests NEW
  • Therapy Center
  • Diagnosis Dictionary
  • Types of Therapy

July 2024 magazine cover

Sticking up for yourself is no easy task. But there are concrete skills you can use to hone your assertiveness and advocate for yourself.

  • Emotional Intelligence
  • Gaslighting
  • Affective Forecasting
  • Neuroscience

Featured Topics

Featured series.

A series of random questions answered by Harvard experts.

Explore the Gazette

Read the latest.

two people running

If it feels too hot to run, maybe it is

Brain.

Does your brain reflect your sex?

Person awake in bed in middle of the night.

Can good sleep help prevent diabetes?

Roger Shapiro.

Roger Shapiro, professor of immunology and infectious diseases at the Harvard T.H. Chan School of Public Health.

Niles Singer/Harvard Staff Photographer

Beginning of end of HIV epidemic?

Scientists cautiously optimistic about trial results of new preventative treatment, prospects for new phase in battle with deadly virus

Alvin Powell

Harvard Staff Writer

Researchers may have found a powerful new preventative against the AIDS virus, which has killed more than 40 million people since the epidemic began in 1981.

In late June, a trial of lenacapavir, an existing anti-HIV drug used to reduce infection, produced an astonishing result: None of the more than 2,100 young female participants in the test contracted the deadly virus. The results beat those of drugs currently being used for this purpose: Truvada, on which 16 of more than 1,000 women became infected, and Descovy, on which 39 of 2,100 plus contracted HIV, between 1 and 2 percent of those treated.

Lenacapavir, produced by drugmaker Gilead Sciences, works by preventing the virus from reproducing. Researchers wanted to know whether giving it to sexually active individuals who have not been infected — a strategy known as PrEP, or pre-exposure prophylaxis — might create a hostile environment in the body and prevent the virus from taking hold.

630,000 People died of AIDS-related causes in 2022

AIDS deaths peaked in 2004, but the condition still killed 630,000 in 2022, when there were 1.3 million new infections. In 2016, the United Nation’s member states committed to ending AIDS as a public health threat by 2030. Researchers have been unsuccessful so far in developing a vaccine.

The Gazette spoke with Roger Shapiro, professor of immunology and infectious diseases at the Harvard T.H. Chan School of Public Health, who has worked to fight AIDS in Botswana for two decades, including early trials exploring PrEP as a way to prevent mother-to-child transmission during breastfeeding. Shapiro said some caveats remain about lenacapavir, but the results are very promising.

It is clear from reading news coverage of this HIV drug trial that there’s a lot of excitement around these results. What do you think of them?

I think the excitement is warranted. We have never had a large HIV prevention trial with zero transmissions before, which is such a convincing result. The other exciting aspect of this trial is the convenience and simplicity of dosing the product just twice per year. I think that will be really attractive to people who may have been on the fence about using PrEP before.

Are these drugs different from vaccines, which also prevent infection?

Drugs are different than vaccines, although when used for PrEP they serve the same preventive purpose. Vaccines train our own immune systems to recognize and attack an infection, whereas drugs work to stop HIV from reproducing at the cellular level and need to be re-dosed to maintain activity.

With a drug such as lenacapavir that can stay effective for six months, the patient experience does start to become more similar to a vaccine, with the important difference that it always needs to be re-dosed.

“Vaccines train our own immune systems to recognize and attack an infection, whereas drugs work to stop HIV from reproducing at the cellular level and need to be re-dosed to maintain activity.”

Is there something that you thought most important about this trial that should be highlighted?

The point to highlight is that zero transmission is a novel and important finding — it received a standing ovation at the international HIV conference when it was presented this week. We have known for several years that long-acting PrEP delivered at a clinic setting is very effective, as this was shown in studies using a different HIV drug called cabotegravir.

But this new study, called PURPOSE 1, really extends those earlier findings for injectable PrEP. The study was large and placebo-controlled, and along with the main efficacy findings, had reassuring safety data.

But there are a few caveats: First, PURPOSE 1, only enrolled cisgender women. There is a companion trial, PURPOSE 2, which will include cisgender men who have sex with men, transgender men, transgender women, and gender non-binary individuals.

The results of that trial are expected in late 2024 or early 2025. So we really don’t know yet whether we will see the same impressive level of protection in those other groups. We also know that these impressive findings occurred in a controlled research setting and may differ in the real world.

Is this potentially the beginning of the end of the HIV epidemic? If so, how long might that take and what would it look like?

I think we are entering a new era where we can expect to drive down transmission to lower and lower levels using a combination of approaches. These approaches include better uptake of testing and treatment, which have been shown to reduce HIV incidence at the population level, as well as PrEP strategies that are more and more effective.

But this only works at scale. We have plenty of work ahead of us to make these approaches affordable and implementable in the places where the need is greatest, which is largely in Sub-Saharan Africa.

“There are still over 1.3 million HIV infections per year — but we now have the tools to really make a dent in these numbers.”

What might stand in the way?

The cost of drugs, for starters. I sincerely hope that lenacapavir will be made available at very low cost for resource-poor parts of the world if it is approved for PrEP by the necessary regulators. There are some encouraging efforts to allow generic manufacturing of this drug for low resource parts of the world, and these need to move forward quickly.

We also need to improve access to HIV testing and linkage to care in hard-to-reach populations, to know who needs to be on treatment and who can benefit from PrEP. And we need simple, community-based implementation strategies to expand access to all of it.

Getting back to whether we might see the end of the HIV epidemic, I think it depends on whether you are asking if we will be able to eliminate all HIV or end its epidemic spread. Humans are complicated. There will always be some who are hard to reach and remain outside of care. And we are still a long way from a one-shot vaccine for HIV, which could ultimately break the cycle of HIV transmission for the next generation.

Until that occurs, our best strategy is to use the amazing new drugs that we have to maximum effect for treatment and prevention and drive new infections to very low levels. This will be no small achievement — there are still over 1.3 million HIV infections per year — but we now have the tools to really make a dent in these numbers. When that happens, we can start talking about the end of the epidemic, while still working toward the ultimate goal of complete elimination.

Is the one-injection-every-six-months treatment model important?

I think so. Many patients really like the current PrEP injections that are once every two months. This strategy removes the need to think about taking a pill each day and can reduce stigma as well. Pushing that out to every six months is almost certainly going to be even better.

For decades, HIV has eluded efforts to control it. What makes lenacapavir different?

We still have a few boxes to check before we can call lenacapavir a game-changer in the PrEP space, but right now it looks very promising. With the right public health messaging and delivery strategies, a highly effective twice-per-year injection to prevent HIV might greatly expand the use of PrEP and drive down new HIV infections. But it needs to be affordable globally, and it needs to be deliverable in hard-to-reach places. Any PrEP strategy, including lenacapavir, will need to be low cost in resource-poor parts of the world to make an impact. I can’t stress this enough.

Share this article

You might like.

Experts who have seen health consequences close-up offer guidelines for summer athletes 

Brain.

Precision medicine is just one field where the answer matters

Person awake in bed in middle of the night.

Study links irregular sleep patterns with higher disease risk

The way forward for Democrats — and the country

Danielle Allen is more worried about identity politics and gaps in civic education than the power of delegates

17 books to soak up this summer

Harvard Library staff recommendations cover romance, fantasy, sci-fi, mystery, memoir, music, politics, history

The best way to watch the Paris Olympics? Hint: It isn't live.

research topics about computer games

Get your flags, your cheers and your nerves ready: the 2024 Paris Olympic Games have begun.

After a very soggy musical opening ceremony on Friday , the competitions officially began on Saturday with all the drama, the close calls, the heartbreak and the joy that comes when the best of the best compete on the world stage. Simone Biles made a triumphant return ! Flavor Flav cheered on the U.S. women's water polo team ! Novak Djokovic beat Rafael Nadal ! And that's just the first three days.

But as all the highs and lows of sporting events return this year, so does the biannual struggle to figure out how to watch every athlete and medal ceremony. The problem is all in the timing; Paris is six hours ahead of U.S. Eastern time, and nine ahead of the Pacific time zone. So when Biles took to the gymnastics arena for a superb qualifying performance, it was 5:40 a.m. on the East coast.

If you set an alarm to tune in, I certainly commend you. But it's not exactly easy to catch every event you may want to watch, especially during the work week. Contests are held in the middle of the night, early in the morning and at midday for American viewers. When they don't take place is during primetime on our side of the Atlantic, which is why, when you turn on NBC's "Primetime in Paris" at 8 EDT/PDT, you'll find a recap of the biggest events of the day emceed by Mike Tirico, often with interviews with families of athletes, NBC "correspondents" like Colin Jost and a whole lot of commercial breaks.

Waking up early or suffering through NBC's overly produced segments are all well and good ways to get your Olympic fix, but the best way to watch these events isn't live or on NBC's official primetime broadcast. It's actually the low-key, full-length replays available on its Peacock streaming service.

If you're a Peacock subscriber and you scroll over to the Olympics hub in the app on your TV, laptop, iPad or mobile phone , you'll find a whole lot of options for watching the Games, including highlight reels, livestreams and full replays. These replays are long and commercial free. They often have different commentators than you'll find in the live events on NBC or their affiliated cable networks (USA, E!, CNBC and Golf Channel).

These commentators speak less and offer more insight, often because they assume a more expert audience is watching. And while many Americans are particularly interested in Team USA, the live and replay broadcasts on NBC often are so USA-centric you might forget anyone else is competing. The official replays simply show the events as they happened. Biles gets the same airtime as any other gymnast from the U.S., Romania, Japan or any other country.

In this way, I was able to enjoy all of the women's gymnastics qualifying rounds on Sunday, hours after they happened, skipping ahead through the slow moments, and see the entire gymnastic field. You appreciate Biles' dominance in the sport all the more by watching gymnasts from all walks of life compete on the uneven bars and balance beam.

The big drawback here is you have to be a paying Peacock subscriber (starts at $7.99/month) to enjoy these replays. But if you do have Peacock (even just for a few weeks to watch the Olympics), the replays are a surprisingly great way to enjoy the Games. If you can't tune in live anyway, you might as well get to watch without commercials, annoying commentators or interjections from Jost talking about why he's a bad surfer.

I watch the Olympics for the hardworking athletes, not for "Saturday Night Live" bits.

Watch CBS News

Google, IBM make strides toward quantum computers that may revolutionize problem solving

By Scott Pelley

Updated on: July 28, 2024 / 7:00 PM EDT / CBS News

This is an updated version of a story first published on Dec. 3, 2023. The original video can be viewed  here . 

Artificial intelligence is the magic of the moment but this is a story about what's next, something incomprehensible. This past December, IBM announced an advance in an entirely new kind of computing - one that may solve problems in minutes that would take today's supercomputers millions of years. That's the difference in quantum computing, a technology being developed at IBM, Google and others. It's named for quantum physics, which describes the forces of the subatomic realm. And as we told you last winter, the science is deep and we can't scratch the surface, but we hope to explain just enough so that you won't be blindsided by a breakthrough that could transform civilization. 

The quantum computer pushes the limits of knowledge--new science, new engineering-- all leading to this processor that computes with the atomic forces that created the universe. 

Dario Gil: I think this moment, it feels to us like the pioneers of the 1940s and 50s that were building the first digital computers.

Dario Gil is something of a quantum crusader. Spanish-born with a Ph.D. in electrical engineering, Gil is head of research at IBM.

Scott Pelley: How much faster is this than say, the world's best supercomputer today?

Dario Gil: We are now in a stage where we can do certain calculations with these systems that would take the biggest supercomputers in the world to be able to do some similar calculation. But the beauty of it, is that we see that we're gonna continue to expand that capability, such that not even a million or a billion of those supercomputers connected together could do the calculations of these future machines. So, we've come a long way. And the most exciting part is that we have a road map and a journey right now, where that is going to continue to increase at a rate that is gonna be shocking. 

IBM Director of Research Dario Gil

Scott Pelley: I'm not sure the world is prepared for this change.

Dario Gil: Definitely not. 

To understand the change, go back to 1947 and the invention of a switch called a transistor. 

Computers have processed information on transistors ever since, getting faster as more transistors were squeezed onto a chip--billions of them today.

But it takes that many because each transistor holds information in only two states. It's either on or it's off-- like a coin-- heads or tails. Quantum abandons transistors and encodes information on electrons that behave like this coin we created with animation. Electrons behave in a way so that they are heads and tails and everything in between. You've gone from handling one bit of information at a time on a transistor to exponentially more data.

Michio Kaku: You can see that there's a fantastic amount of information stored, when you can look at all possible angles, not just up or down.

Physicist Michio Kaku of the City University of New York, already calls today's computers "classical." He uses a maze to explain quantum's difference.

Michio Kaku: Let's look at a classical computer calculating how a mouse navigates a maze. It is painful. One by one, it has to map every single left turn, right turn, left turn, right turn before it finds the goal. Now a quantum computer scans all possible routes simultaneously. This is amazing. How many turns are there? Hundreds of possible turns, right? Quantum computers do it all at once.

Kaku's book, titled "Quantum Supremacy," explains the stakes.

Michio Kaku: We're looking at a race, a race between China, between IBM, Google, Microsoft, Honeywell, all the big boys are in this race to create a workable, operationally efficient quantum computer. Because the nation or company that does this, will rule the world economy.

Physicist Michio Kaku

But a reliable, general purpose, quantum computer is a tough climb yet. Maybe that's why this wall is in the lobby of Google's quantum lab in California.

Here, we got an inside look, starting with a microscope's view of what replaces the transistor.

Google employee: This right here is one qubit and this is another qubit, this is a five qubit chain.

Those crosses, at the bottom, are qubits, short for quantum bits. They hold the electrons and act like artificial atoms. Unlike transistors, each additional qubit doubles the computer's power. It's exponential. so, while 20 transistors are 20 times more powerful than one. Twenty qubits are a million times more powerful than one.

Charina Chou: So this gets positioned right here on the fridge. 

Charina Chou, chief operating officer of Google's lab, showed us the processor that holds the qubits. Much of that above chills the qubits to what physicists call near absolute zero.

Scott Pelley: Near absolute zero I understand is about 460 degrees below zero Fahrenheit. So that's about as cold as anything can get.

Charina Chou: Yes, almost as cold as possible.

That temperature, inside a sealed computer, is one of the coldest places in the universe. The deep freeze eliminates electrical resistance and isolates the qubits from outside vibrations so they can be controlled with an electro-magnetic field. The qubits must vibrate in unison. But that's a tough trick called coherence.

Scott Pelley: Once you have achieved coherence of the qubits, how easy is that to maintain?

Charina Chou: It's really hard. Coherence is very challenging. 

Coherence is fleeting. In all similar machines, coherence breaks down constantly--creating errors.

Charina Chou: We're making about one error in every hundred or so steps. Ultimately, we think we're gonna need about one error in every million or so steps. That would probably be identified as one of the biggest barriers.

Charina Chou and Scott Pelley

Mitigating those errors and extending coherence time while scaling up to larger machines are the challenges facing German-American scientist Hartmut Neven, who founded Google's lab, and its casual style, in 2012.

Scott Pelley: Can the problems that are in the way of quantum computing be solved? 

Hartmut Neven: I should confess, my subtitle here is chief optimist. After having said this, I would say at this point, we don't need any more fundamental breakthroughs. We need little improvements here and there. If we have all the pieces together, we just need to integrate them well to build larger and larger systems.

Scott Pelley: And you think that all of this will be integrated into a system in what period of time?

Hartmut Neven: Yeah. We often say we wanna do it by the end of the decade so that we can use this Kennedy quote, "Get it done by the end of the decade."

Scott Pelley: The end of this decade?

Hartmut Neven: Yes.

Scott Pelley: Five or six years?

That's about the timeline Dario Dil predicts. And the IBM research director told us something surprising. 

Scott Pelley: There are problems that classical computers can never solve.

Dario Gil: Can never solve. And I think this is an important point because we're accustomed to say, "ah computers get better." Actually, there are many, many problems that are so complex that we can make that statement that, "Actually, classical computers will never be able to solve that problem." Not now, not 100 years from now, not 1,000 years from now." You actually require a different way to represent information and process information. That's what quantum gives you.

Quantum could give us answers to impossible problems in physics, chemistry, engineering and medicine. Which is why IBM and Cleveland Clinic have installed one of the first quantum computers to leave the lab for the real world.

Serpil Erzurum: It takes way too much time to find the solutions we need.

Dr. Serpil Erzurum, chief research officer at Cleveland Clinic

We sat down with Dario Gil and Dr. Serpil Erzurum, chief research officer at Cleveland Clinic. She told us health care would be transformed if quantum computers can model the behavior of proteins- the molecules that regulate all life. Proteins change shape to change function in ways too complex to follow. and when they get it wrong that causes disease.

Serpil Erzurum: It takes on many shapes, many, many shapes, depending upon what it's doing, and where it is, and which other protein it's with. I need to understand the shape it's in when it's doing an interaction or a function that I don't want it to do for that patient. Cancer, autoimmunity. It's a problem. We are limited completely by the computational ability to look at the structure in real time for any, even one, molecule.

Cleveland Clinic is so proud of its quantum computer they set it up in a lobby. Behind the glass, that shiny silver cylinder encloses the kind of cooling system and processor you saw earlier. Quantum is not solving the protein problem yet. This is more of a trial run to introduce researchers to quantum's potential.

Scott Pelley: The people using this machine, are they having to learn an entirely different way to communicate with a computer?

Dario Gil: I think that's what's really nice, that you actually just use a regular laptop, and you write a program very much like you would write a traditional program. But when you, you know, click, you know, "go" and "run," it just happens to run on a very different kind of computer.

There are a half  dozen competing designs in the race. China named quantum a top national priority and the U.S. government is spending nearly a billion dollars a year on research. The first change is expected to come this year when the U.S. publishes new standards for encryption because quantum is expected one day to break the codes that lock everything from national secrets to credit cards. This past December IBM unveiled its Quantum System Two with three times the qubits as the machine you saw in cleveland. Last year we saw System Two under construction.

Dario Gil: It's a machine unlike anything we have ever built.

Scott Pelley: And this is it.

Dario Gil: And this is it.

IBM's Dario Gil told us System Two has the room to expand to thousands of qubits.

Scott Pelley: What are the chances that this is one of those things that's gonna be ready in five years and always will be? 

Dario Gil: We don't see an obstacle right now that would prevent us from building systems that will have tens of thousands and even a 100 thousand qubits working with each other. So we are highly confident that we will get there.

Of all the amazing things we heard, it was physicist Michio Kaku who led us down the path to the biggest idea of all. He said we were walking through a quantum computer. Processing information with subatomic particles is how the universe works.

Michio Kaku: You know when I look at the night sky, I see stars, I look at the flowers, the trees I realize that it's all quantum, the splendor of the universe itself. The language of the universe is the language of the quantum.

Learning that language may bring more than inconceivable speed. Reverse engineering nature's computer could be a window on creation itself.

Produced by Denise Schrier Cetta and Katie Brennan. Broadcast associates, Michelle Karim and Eliza Costas. Edited by Warren Lustig

headshot-600-scott-pelley.jpg

Scott Pelley, one of the most experienced and awarded journalists today, has been reporting stories for 60 Minutes since 2004. The 2023-24 season is his 20th on the broadcast. Scott has won half of all major awards earned by 60 Minutes during his tenure at the venerable CBS newsmagazine.

More from CBS News

Delta faces $500 million in lost revenue as result of tech outage, CEO says

These are the 4 best gold investing options this August, experts say

The best college dorm bed linens for back-to-school

The Fed set to issue decision on interest rates. Here's what to expect.

IMAGES

  1. 115 Interesting Video Game Research Topics and Ideas

    research topics about computer games

  2. The effects of computer game Free Essay Example

    research topics about computer games

  3. 127 Latest Video Game Research Topics You Will Love

    research topics about computer games

  4. (PDF) Computer science students making games: A study on skill gaps and

    research topics about computer games

  5. Computer Games Essay Writing for 4th

    research topics about computer games

  6. Impact of computer games on study habits Essay Example

    research topics about computer games

VIDEO

  1. Top Ten Games You Can Play On Your School Computer: Geo-Fs #gaming #schoolcomputer #school #tech#pc

  2. Top 6 Topics to learn in Computer Vision in the year 2022

  3. كيف اختار مشروع تخرج- [1] graduation project

  4. CECIIS 2024_Central European Conference on Information and Intelligent Systems_ final call

  5. Starfield

  6. Computer Networks PhD Research Topics

COMMENTS

  1. 110 Video Game Topic Ideas for Essays & Examples

    Here, we've collected excellent essay topics for true gaming enthusiasts. Whether you're looking for argumentative essay ideas on video games, research topics, or questions for debate, you will find them here. We will write a custom essay specifically for you by our professional experts. 182 writers online. Learn More.

  2. 107 Video Game Essay Topic Ideas & Examples

    To help you get started, here are 107 video game essay topic ideas and examples to inspire your writing: The impact of violent video games on children's behavior. The evolution of video game graphics over the years. The rise of esports and its influence on the gaming industry.

  3. Game Studies

    The International Journal of Computer Game Research. Our Mission - To explore the rich cultural genre of games; to give scholars a peer-reviewed forum for their ideas and theories; to provide an academic channel for the ongoing discussions on games and gaming.. Game Studies is a non-profit, open-access, crossdisciplinary journal dedicated to games research, web-published several times a year ...

  4. Computer games News, Research and Analysis

    Browse Computer games news, research and analysis from The Conversation ... Articles on Computer games. Displaying 1 - 20 of 73 articles ... Unfollow topic Follow topic

  5. ICGA Journal

    The ICGA Journal provides an international forum for computer games researchers presenting new results on ongoing work. The editors invite contributors to submit papers on all aspects of research related to computers and games. Relevant topics include, but are not limited to: (5) general scientific contributions produced by the study of games ...

  6. Computer Science's Impact on Video Games

    As computer science has evolved, so have many industries rooted in computing technology, including the video game industry — or simply "gaming" as it's often called today. But at its center are some of the same concepts computer science students have been learning for decades. "Programming is an essential foundation for game design ...

  7. Game-based learning in computer science education: a scoping literature

    Using games in education has the potential to increase students' motivation and engagement in the learning process, gathering long-lasting practical knowledge. Expanding interest in implementing a game-based approach in computer science education highlights the need for a comprehensive overview of the literature research. This scoping review aims to provide insight into current trends and ...

  8. Software engineering research for computer games: A systematic review

    Results. Software engineering for computer games is a research domain that has doubled its research activity during the last 5 years. The dominant research topic has proven to be requirements engineering, while topics such as software verification and maintenance have been neglected up to now.

  9. Game Studies

    Scholars across the academic disciplines are working on computer game topics as diverse as machine learning, representations of gender, character design and cognitive rehabilitation. ... the technological and marketing innovations of the computer game industry are to the development and growth of computer game research, and, perhaps vice versa.

  10. 34700 PDFs

    Explore the latest full-text research PDFs, articles, conference papers, preprints and more on GAME DEVELOPMENT. Find methods information, sources, references or conduct a literature review on ...

  11. Computer game design News, Research and Analysis

    Explore the latest research and analysis on computer game design from The Conversation, a network of academics and experts.

  12. How Video Games Are Making Research Fun

    By creating games that bake the process of data collection into their mechanics, players can contribute data and even uncover new insights just by playing along. Gamification, along with the growing movement known as citizen science, which invites volunteers to take part in real science research, is, in its own way, reshaping what it means to ...

  13. Computer and Video Game Research

    The study of computer game development and impact. | Review and cite COMPUTER AND VIDEO GAME RESEARCH protocol, troubleshooting and other methodology information | Contact experts in COMPUTER AND ...

  14. Computer Science *: Game Development

    Game Development 2042 by Tim Fields. ISBN: 9781003291800. Publication Date: 2022. This book is a fast-paced look at the next two decades of the games industry with a focus on game design, the evolution of gaming markets around the world, the future of technology, Artificial Intelligence, Big Data, crypto-currency, and the art and business of ...

  15. 7 Research Topics for PhD Students in Game Technology

    Here are seven open research topics for PhD students who like Game technology. 1- Real-time rendering techniques for virtual and augmented reality: This research topic would explore ways to optimize the performance of rendering algorithms in order to improve the visual quality of virtual and augmented reality games and applications.

  16. Home

    Broadly stated, video game studies is the academic analysis of various aspects of computer, console, arcade, and Internet games. It is frequently an interdisciplinary field of study, with scholars from film and media studies, popular cultural studies, American studies, psychology, sociology, education, and literature departments writing about and critiquing games and gaming.

  17. Full article: Influence of online computer games on the academic

    The lack of guidance is apparent by the existing gap in research literature that addresses the topic of the use of digital games to engage nontraditional students. This literature review attempts to bridge the gap by providing an overview of the existing problem, methods, benefits, challenges, and possible solutions.

  18. Computer Game

    Information and communication technology platforms as an experimental paradigm in cyber-bystander research: A critique of methodology. Pooja Megha Nagar, Victoria Talwar, in Computers in Human Behavior Reports, 2021. 2.3.1.2 Computer games. Two of the three articles used a computer game as tool to observe the natural interactions between participants' in a controlled setting (Ingram, 2016 ...

  19. Computer Games for Learning: An Evidence-Based Approach

    Computer Games for Learning: An Evidence-Based Approach. Richard E. Mayer. Book Abstract. Many strong claims are made for the educational value of computer games, but there is a need for systematic examination of the research evidence that might support such claims. This book fills that need by providing, a comprehensive and up-to-date ...

  20. (PDF) Software engineering research for computer games: A systematic

    Questions: 1. According to the paper, which research topic was most addressed in the computer game software engineering? 2. Among the descriptive, explanatory, and empirical research approaches, the one most frequently mentioned in the domain of computer game software engineering was explanatory.

  21. 127 Latest Video Game Research Topics You Will Love

    Video Games Research Paper Topics For College. Of course, we have a list of video games research paper topics for college students. These are a bit more difficult than the others in our list: Linking video game addiction to substance abuse. The use of first person shooter games in military training programs.

  22. 52 questions with answers in COMPUTER GAMES

    3. Research and develop more energy-efficient gaming hardware, such as graphics cards, processors, and gaming consoles. 4. Promote the use of gaming-as-a-service (GaaS) models, which can reduce ...

  23. College students and computer, video and Internet games

    Chicago (July 6, 2003) — Computer, video and online games are woven into the fabric of everyday life for college students. And, they are more a part of college students' social lives than many would suspect. All of the 1,162 students surveyed on 27 campuses by the Pew Internet & American Life Project reported they had played a video ...

  24. Gaming

    In the U.S., four-in-ten women and roughly a quarter of adults ages 65 and older say they play video games at least sometimes. Why join the gig economy? For many, the answer is 'for fun'. Nearly a quarter of Americans say they've earned money in the digital "platform economy" in the past year, according to a new Pew Research Center ...

  25. Florida Poly study reveals complex AI limitations in simple games

    Dr. Oguzhan Topsakal, assistant professor of computer science at Florida Polytechnic University (left), and computer science seniors Jackson Harper and Colby Edell, completed a research project this summer creating a benchmarking tool to measure the reasoning and planning abilities of large language models like ChatGPT.

  26. Compulsive Computer Gaming: Should You Be Worried?

    The "research" jury is very much out on compulsive gaming. ... as many as 65% of the adult U.S. population play computer games and 25% of them are age 45 or older. ... Trending Topics. Emotional ...

  27. Computer scientists are developing research infrastructure to support

    The George Mason computer scientists teamed up with researchers at the University of Maryland (UMD) for their project, "CoMIC: A Collaborative Mobile Immersive Computing Infrastructure for Conducting Multi-User XR Research," funded by a National Science Foundation grant since April 2023. The project has sites at both George Mason and UMD ...

  28. Beginning of end of HIV epidemic?

    We still have a few boxes to check before we can call lenacapavir a game-changer in the PrEP space, but right now it looks very promising. With the right public health messaging and delivery strategies, a highly effective twice-per-year injection to prevent HIV might greatly expand the use of PrEP and drive down new HIV infections.

  29. The best way to watch the Paris Olympics isn't live

    If you're a Peacock subscriber and you scroll over to the Olympics hub in the app on your TV, laptop, iPad or mobile phone, you'll find a whole lot of options for watching the Games, including ...

  30. Google, IBM make strides toward quantum computers that may

    Michio Kaku: We're looking at a race, a race between China, between IBM, Google, Microsoft, Honeywell, all the big boys are in this race to create a workable, operationally efficient quantum computer.